Journal of Materials Science

, Volume 26, Issue 18, pp 4888–4892 | Cite as

Initiation sites for discontinuous precipitation in some Cu-base alloys

  • I. Manna
  • S. K. Pabi
  • W. Gust


A systematic effort has been made to investigate the suitability of various interfaces, natural as well as artificial, to initiate discontinuous precipitation. The interfaces studied in the present investigation include sample surface (external), and grain and interphase boundaries. It has been demonstrated that in addition to grain boundaries, non-conventional initiation sites like coherent faces of a twin or eutectic/eutectoid boundaries under favourable conditions may also nucleate discontinuous precipitation. In general, the ability of an interface to undergo thermally activated migration appears to be the most important criterion for the initiation of discontinuous precipitation.


Polymer Precipitation Migration Sample Surface Favourable Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Gust, in “Phase Transformations”, Series 3, No. 11, Vol. 1, edited by The Institution of Metallurgists (Chameleon Press, London, 1979) p. 11/27.Google Scholar
  2. 2.
    D. B. Williams and E. P. Butler, Int. Metals Rev. 26 (1981) 153.Google Scholar
  3. 3.
    M. Friesel, I. Manna and W. Gust, Colloque de Physique 51 (1990) C1–381.Google Scholar
  4. 4.
    R. D. Doherty, in “Physical Metallurgy”, edited by R. W. Cahn and P. Haasen (North-Holland Physics, Amsterdam, 1983) p. 1002.Google Scholar
  5. 5.
    I. Manna, S. K. Pabi and W. Gust, Acta metall. in press.Google Scholar
  6. 6.
    P. Mukhopadhyay and V. Raman, Metallography 11 (1978) 481.CrossRefGoogle Scholar
  7. 7.
    T. H. Chuang, R. A. Fournelle, W. Gust and B. Predel, Scripta metall. 20 (1986) 25.CrossRefGoogle Scholar
  8. 8.
    I. Manna and S. K. Pabi, J. Mater. Sci. Lett. 9 (1990) 1226.CrossRefGoogle Scholar
  9. 9.
    I. Manna, S. Bader, W. Gust and B. Predel Phys. Status Solidi (a) 119 (1990) K9.CrossRefGoogle Scholar
  10. 10.
    B. Predel and W. Gust, Mater. Sci. Engng 16 (1974) 239.CrossRefGoogle Scholar
  11. 11.
    P. A. Beck and P. R. Sperry, J. Appl. Phys. 21 (1950) 150.CrossRefGoogle Scholar
  12. 12.
    P. R. Subramaniam and D. E. Laughlin, Bull. Alloy Phase Diagr. 10 (1989) 554.CrossRefGoogle Scholar
  13. 13.
    W. Gust, B. Predel and U. Roll, Acta metall. 28 (1980) 1395.CrossRefGoogle Scholar
  14. 14.
    R. A. Fournelle and J. B. Clark, Metall. Trans. A3 (1972) 2757.CrossRefGoogle Scholar
  15. 15.
    A. Garg, W. A. T. Clark and J. P. Hirth, Phil. Mag. 59 (1989) 479.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • I. Manna
    • 1
  • S. K. Pabi
    • 1
  • W. Gust
    • 1
  1. 1.Max-Planck-Institut für Metallforschung and Institut für MetallkundeStuttgart 1Germany

Personalised recommendations