Advertisement

Journal of Materials Science

, Volume 26, Issue 8, pp 2240–2244 | Cite as

Thermoluminescence and storage stability of TLD-100 dosimeter irradiated with 60Co-gamma rays

  • A. Abdel-Kader
  • H. I. Farag
  • A. R. Tolba
Papers
  • 94 Downloads

Abstract

Thermoluminescence glow curves of TLD-100 revealed three peaks at 373, 460 and 518 K for all samples irradiated with gamma ray doses of 0.5 to 700 Gy. The total thermoluminescence response and the height of the main peak at 460 K showed similar characteristics to radiation dose. On the other hand, the total area under the glow curve increases continuously with radiation dose up to 1000 Gy. All irradiated samples investigated showed no significant fading over 28 d. Activation energy, E, and escape frequency factor, s, for the main glow peak were calculated by the modified empirical equation, as well as by methods depending on the shape of the glow peak. It was found that E has a value of 1.33 to 1.83 eV and s falls between 5.8×1013 and 3.06×1019 sec−1, depending on the method used.

Keywords

Activation Energy Radiation Dose Main Peak Empirical Equation Irradiate Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Daniels, C. A. Boyd and D. F. Saunders, Science 117 (1953) 343.CrossRefGoogle Scholar
  2. 2.
    W. Kossel, V. Mayer and H. C. Wolf, Naturwiss. 41 (1954) 209.CrossRefGoogle Scholar
  3. 3.
    R. J. Ginther and R. D. Kirk, J. Electrochem. Soc. 104 (1957) 365.CrossRefGoogle Scholar
  4. 4.
    J. R. Cameron, F. Daniels, H. Johnson and G. N. Kenney, Science 134 (1961) 333.CrossRefGoogle Scholar
  5. 5.
    J. R. Cameron, D. Zimmerman, G. N. Kenney, R. Buch, R. Bland and R. Grant, Health Phys. 10 (1964) 25.CrossRefGoogle Scholar
  6. 6.
    G. Portal, H. Francois and Ph. Blanchard, C.R. Congr. Eurp. IRPA, Menton, 9–11 October 1969, p. 79.Google Scholar
  7. 7.
    G. Portal, F. Berman, Ph. Blanchard and R. Prigent, in Proceedings of the 3rd International Conference on Luminescence Dosimetry, JAEA/AEC, Risø, Denmark (1971) p. 410.Google Scholar
  8. 8.
    G. Portal, French Pat. 7103757 (1971), published (1972) 2123889.Google Scholar
  9. 9.
    F. Sagastibelza and J. L. Alvarez Rivas, J. Phys. C Solid State Phys. 14 (1981) 1873.CrossRefGoogle Scholar
  10. 10.
    Harshaw Pat. Specification 1059518 (The Patent Office, London US Pat. 3320180, 1967).Google Scholar
  11. 11.
    D. W. Zimmerman and D. E. Jones, Appl. Phys. Lett. 10 (1967) 82.CrossRefGoogle Scholar
  12. 12.
    J. R. Cammeron, N. Suntharalingam and G. N. Kenney, “Thermoluminescent Dosimetry” (University of Wisconsin Press, Madison, 1968).Google Scholar
  13. 13.
    M. J. Rossiter, D. B. Rees-Evans and S. C. Ellis, J. Phys. D 3 (1970) 1816.CrossRefGoogle Scholar
  14. 14.
    Idem., in Proceedings of the 3rd International Conference on Luminescence Dosimetry, JAEA/AEC, Risø, Denmark (1971) p. 1002.Google Scholar
  15. 15.
    M. J. Rossiter, D. B. Rees-Evans, S. C. Ellis and J. M. Griffiths, J. Phys. D 4 (1971) 1245.CrossRefGoogle Scholar
  16. 16.
    D. Zimmerman, C. R. Rhyner and J. R. Cameron, Health Phys. 25 (1973) 427.CrossRefGoogle Scholar
  17. 17.
    G. C. Grittenden, P. D. Townsend, J. Gilkes and M. C. Wintersgill, J. Phys. D 7 (1974) 2397.CrossRefGoogle Scholar
  18. 18.
    T. G. Stoebe and S. Watanabe, Phys. Status Solidi (a) 29 (1975) 11.CrossRefGoogle Scholar
  19. 19.
    C. Jen and J. F. Merklin, ibid. 50 (1978) 469.CrossRefGoogle Scholar
  20. 20.
    W. Wachter, N. J. Vana and H. Aiginger, Nucl. Instrum. Meth. 157 (1980) 21.CrossRefGoogle Scholar
  21. 21.
    W. Wachter, J. Appl. Phys. 53 (1982) 5210.CrossRefGoogle Scholar
  22. 22.
    T. Nakajima, J. Phys. C. Solid State Phys. 4 (1971) 1060.CrossRefGoogle Scholar
  23. 23.
    S. W. S. NcKeever, Nucl. Instrum. Meth. 175 (1980) 19.CrossRefGoogle Scholar
  24. 24.
    T. Nakajima, J. Appl. Phys. 56 (1984) 2908.CrossRefGoogle Scholar
  25. 25.
    C. Christodoulides, J. Phys. D Appl. Phys. 18 (1985) 1501.CrossRefGoogle Scholar
  26. 26.
    P. S. Mazumdar, S. J. Singh and R. K. Gartia, ibid. 21 (1988) 815.CrossRefGoogle Scholar
  27. 27.
    L. I. Grosswiener, J. Appl. Phys. 24 (1953) 1306.CrossRefGoogle Scholar
  28. 28.
    C. B. Lushchik, Dokl Akad. Nauk. SSSR 101 (1955) 641.Google Scholar
  29. 29.
    C. B. Lushchik, Sov. Phys. JETP 3 (1956) 390.Google Scholar
  30. 30.
    R. Chen, J. Appl. Phys. 40 (1969) 570.CrossRefGoogle Scholar
  31. 31.
    F. Urbach, Wiener Ber. IIa 139 (1930) 363.Google Scholar
  32. 32.
    D. Curie, “Luminescence in Crystals” (Methuen, London, 1963).Google Scholar
  33. 33.
    S. P. Kathuria and S. V. Moharil, J. Phys. D Appl. Phys. 16 (1983) 1331.CrossRefGoogle Scholar
  34. 34.
    S. V. McHaril and S. P. Kathuria, ibid. 18 (1985) 691.CrossRefGoogle Scholar
  35. 35.
    J. F. Fowler, Nature 207 (1965) 997.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. Abdel-Kader
    • 1
  • H. I. Farag
    • 2
  • A. R. Tolba
    • 2
  1. 1.Physics Department, Faculty of ScienceMenoufia UniversityMenoufiaEgypt
  2. 2.Radiotherapy Department, Radiation Physics Unit, National Cancer InstituteCairo UniversityCairoEgypt

Personalised recommendations