Advertisement

Journal of Materials Science

, Volume 26, Issue 8, pp 2219–2228 | Cite as

Incommensurate modulated structure in the cubic-tetragonal transition of V-Ru alloys studied by high resolution electron microscopy

  • N. Ohnishi
  • T. Onozuka
  • M. Hirabayashi
Papers

Abstract

The cubic-tetragonal transition of V-Ru alloys near 50 at % has been investigated by high resolution transmission electron microscopy. In the cubic to tetragonal transition process of thin foil specimens, we found an incommensurate modulated structure showing satellite spots near 1/4 〈0 1 1〉 positions in the electron diffraction patterns. This incommensurate structure is composed of many domains of the commensurate modulated structure with a pseudotetragonal cell of A=B=2(a2 + c2)1/2 and C=c, where a and c (∼1.07a) are the lattice constants of the tetragonally distorted CsCl-type structure. The modulation is interpreted in terms of the combination of dual elastic shear distortion waves nearly parallel to the 〈0 1 1〉 directions with the approximate wavelength of 2√2a. We propose a model for the incommensurate modulated structure.

Keywords

Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Lattice Constant Electron Diffraction Transition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Testardi, Rev. Mod. Phys. 47 (1975) 637.CrossRefGoogle Scholar
  2. 2.
    N. Nakanishi, in “Progress in Materials Science” Vol. 24, edited by J. W. Christian, P. Haasen and T. B. Massalski, (Pergamon, New York, 1980) p. 143.Google Scholar
  3. 3.
    N. Nakanishi, A. Nagasawa and Y. Murakami, J. Physique 43 (1982) 35.Google Scholar
  4. 4.
    L. E. Tanner and W. A. Soffa (eds), Met. Trans. A19 (1988), 159–234, 761–820.Google Scholar
  5. 5.
    C. W. Chu, E. Bucher, A. S. Cooper and J. P. Maita, Phys. Rev. B4 (1971) 320.CrossRefGoogle Scholar
  6. 6.
    M. Marezio, P. D. Dernier and C. W. Chu, ibid. B4 (1971) 2825.CrossRefGoogle Scholar
  7. 7.
    L. B. Welsh and C. W. Chu, ibid. B8 (1973) 1026.CrossRefGoogle Scholar
  8. 8.
    T. Tsukamoto, K. Koyama, A. Oota and S. Noguchi, J. Phys. F17 (1987) 1695.CrossRefGoogle Scholar
  9. 9.
    A. Oota and J. Muller, in Proceedings of the International Conference on Martensitic Transformations, Nara, August 1986, edited by I. Tamura (Japan Institute of Metals, Sendai, 1986) p. 1121.Google Scholar
  10. 10.
    Idem., J. Phys. F17 (1987) 153.CrossRefGoogle Scholar
  11. 11.
    T. Asada, T. Hoshino and M. Kataoka, ibid. F15 (1985) 1497.CrossRefGoogle Scholar
  12. 12.
    A. Oota, M. Tsuchiya and S. Noguchi, ibid. F14 (1984) 899.CrossRefGoogle Scholar
  13. 13.
    N. Ohnishi, T. Onozuka and M. Hirabayashi, in Proceedings of the MRS International Meeting on Advanced Materials, Vol. 9, Tokyo, June 1988, edited by K. Otsuka and K. Shimizu (Materials Research Society, Pittsburgh, 1988) p. 531.Google Scholar
  14. 14.
    N. Ohnishi, T. Onozuka and M. Hirabayashi, in Proceedings of the International Conference on Martensitic Transformations, Sydney, July 1989, edited by B. C. Muddle, Materials Science Forum, Vol. 56–58 (1990) p. 83.Google Scholar
  15. 15.
    Y. Yamada, Phys. Rev. to be published.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • N. Ohnishi
    • 1
  • T. Onozuka
    • 1
  • M. Hirabayashi
    • 1
  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations