Advertisement

Journal of Materials Science

, Volume 26, Issue 8, pp 2150–2156 | Cite as

Mullite formation from xerogels of (0.84–2.2) Al2O3·1SiO2

  • Fu-Su Yen
  • C. S. Hsi
  • Y. H. Chang
  • H. Y. Lu
Papers

Abstract

Xerogels of (0.84–2.2) Al2O3·1SiO2 prepared by chemical coprecipitation of Al(NO3)3·9H2O and Si(OC2H5)4 experience three thermal reaction paths for mullite formation. Those with pseudoboehmite are found to form mullite via the paths of either Al-Si spinel → mullite transformation or γ-Al2O3 → θ-Al2O3 + amorphous SiO2 → mullite, depending upon the ratios of Al2O3/SiO2. Higher SiO2 content may prefer the former reaction. Xerogels composed of bayerite form mullite via the route η-Al2O3 → γ-Al2O3 + amorphous SiO2 → mullite. Mullite thus formed exhibits a different crystal size, being 20–25 nm for that obtained from pseudoboehmite and around 37 nm for bayerite. The highest yield of mullite formation may be achieved with xerogels of pseudoboehmite with the stoichiometric mullite compositions, 3Al2O3·SiO2.

Keywords

Polymer SiO2 Al2O3 Crystal Size Reaction Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Prochazka and F. J. Klug, J. Amer. Ceram. Soc. 66 (1983) 874.CrossRefGoogle Scholar
  2. 2.
    D. W. Hoffman, R. Roy and S. Komarneni, ibid. 67 (1984) 468.CrossRefGoogle Scholar
  3. 3.
    A. K. Chakravorty and G. H. Ghosh, ibid. 69 (1986) 202.Google Scholar
  4. 4.
    J. Osaka, Nature 191 (1961) [4792] 1000–1.CrossRefGoogle Scholar
  5. 5.
    S. Kanzaki, H. Tabata, T. Kumazawa and S. Ohta, Amer. Ceram. Soc. 68 (1985) 6.CrossRefGoogle Scholar
  6. 6.
    S. M. Johnson and J. A. Pask, Amer. Ceram. Soc. Bull. 61 (1982) 838.Google Scholar
  7. 7.
    K. Hamano, T. Sato and Z. Nakagawa, Yogyo-Kyokai-Shi 94 (1986) 122.Google Scholar
  8. 8.
    G. W. Brindley and N. Nakahira, J. Amer. Ceram. Soc. 42 (1956) 311.CrossRefGoogle Scholar
  9. 9.
    K. Wefer and G. M. Bell, Alcoa Research Laboratory, Technical Report No. 19 (1972).Google Scholar
  10. 10.
    Y. Hirata, H. Minimizono and K. Shimada, Yogyo-Kyokai-Shi 93 (1985) 36.Google Scholar
  11. 11.
    C. S. Hsi, H. Y. Lu and F. S. Yen, J. Amer. Ceram. Soc., 72 (1989) 2208–10.CrossRefGoogle Scholar
  12. 12.
    B. D. Cullity, “Elements of X-ray Diffraction”, 2nd Edn (Addison-Wesley, Reading, MA, 1987).Google Scholar
  13. 13.
    F. W. Dynys, M. Ljungberg and J. W. Halloran, Mater. Res. Soc. Symp. Proc. 32 (1984) 321.CrossRefGoogle Scholar
  14. 14.
    R. Lamber, J. Mater. Sci. Lett. 5 (1986) 177.CrossRefGoogle Scholar
  15. 15.
    A. Nishikawa, “Technology of Monolithic Refractories” (Pillbrico, Japan, 1970).Google Scholar
  16. 16.
    W. H. Gitzen, “Alumina as a Ceramic Material” (American Ceramic Society, Columbus, OH, 1970).Google Scholar
  17. 17.
    P. A. Badkar and J. E. Bailey, J. Mater. Sci. 11 (1976) 1794.CrossRefGoogle Scholar
  18. 18.
    R. K. Iler, J. Amer. Ceram. Soc. 44 (1961) 618.CrossRefGoogle Scholar
  19. 19.
    R. K. Dwivedi and G. Gowda, J. Mater. Sci. Lett. 4 (1985) 331.CrossRefGoogle Scholar
  20. 20.
    K. Okada and N. Otsuka, J. Amer. Ceram. Soc. 69 (1987) 652.CrossRefGoogle Scholar
  21. 21.
    B. Sonuparlak, M. Sarikaya and I. A. Aksay, ibid. 70 (1987) 837.CrossRefGoogle Scholar
  22. 22.
    W. C. Wei and J. W. Halloran, ibid. 71 (1988) 166.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Fu-Su Yen
    • 1
  • C. S. Hsi
    • 1
  • Y. H. Chang
    • 1
  • H. Y. Lu
    • 2
  1. 1.Department of Mineral and Petroleum EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Material EngineeringYet-Sun UniversityKaohsungTaiwan

Personalised recommendations