Advertisement

Journal of Materials Science

, Volume 26, Issue 8, pp 2063–2070 | Cite as

Helium-induced weld cracking in austenitic and martensitic steels

  • H. T. Lin
  • B. A. Chin
Papers

Abstract

Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1 MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the “tritium trick” technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult.

Keywords

Tritium Brittle Fracture Fusion Zone Intergranular Fracture Bubble Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Rosenbaum, “Treatise on Materials Science and Technology”, Vol. 7 (Academic Press, New York, 1975).Google Scholar
  2. 2.
    J. O. Stiegler and L. K. Mansur, Ann. Rev. Mater. Sci. 9 (1979) 405.CrossRefGoogle Scholar
  3. 3.
    R. S. Barnes, Nature 206 (1965) 1307.CrossRefGoogle Scholar
  4. 4.
    D. R. Harries, J. Nucl. Mater. 82 (1979) 635.CrossRefGoogle Scholar
  5. 5.
    M. M. Hall Jr, A. G. Hins, J. R. Summers and D. E. Walker, “Weldment: Physical Metallurgy and Failure Phenomena, Proceedings of the Fifth Bolton Landing Conference” (General Electric Co, Schenectady, New York, 1978) p. 365.Google Scholar
  6. 6.
    S. D. Atkin, ADIP Semiannual Progress Report (September 1981) p. 110.Google Scholar
  7. 7.
    W. R. Kanne, C. L. Angerman and B. J. Eberhard, DP-147,0 (E.I. du Pont de Nemours, Savannah River Laboratory, Aiken, SC, 1987).Google Scholar
  8. 8.
    B. A. Chin, R. J. Neuhold and J. L. Straalsund, Nucl. Technol. 57 (1982) 426.CrossRefGoogle Scholar
  9. 9.
    Annual Books and ASTM Standards, “Standard Guide for Simulation of Helium Effects in Irradiated Materials”, Vol. 12.02, E492-83 (American Society for Testing and Materials, Philadelphia, PA) pp. 808–11.Google Scholar
  10. 10.
    B. M. Oliver, J. G. Bradley and H. Iv. Farrar, Geochim Cosmochim. Acta 48 (1984) 1625.CrossRefGoogle Scholar
  11. 11.
    H. T. Lin, PhD dissertation, Auburn University (1989).Google Scholar
  12. 12.
    D. W. James and G. M. Leak, Phil. Mag. 12 (1965) 491.CrossRefGoogle Scholar
  13. 13.
    D. Hull and D. Rimmer, ibid. 4 (1959) 673.CrossRefGoogle Scholar
  14. 14.
    M. V. Speight and J. E. Harries, Metal Sci. J. 1 (1967) 83.CrossRefGoogle Scholar
  15. 15.
    J. Weertman, Scripta Metall. 7 (1973) 4129.CrossRefGoogle Scholar
  16. 16.
    M. V. Speight and W. Beere, Metal Sci. J. 9 (1975) 190.CrossRefGoogle Scholar
  17. 17.
    R. Raj and M. F. Ashby, Acta Metall. 23 (1975) 653.CrossRefGoogle Scholar
  18. 18.
    H. Trinkaus, Ber. Bunsenges. Phys. Chem. 82 (1978) 249.CrossRefGoogle Scholar
  19. 19.
    H. Riedel, “Fracture at High Temperature” (Springer-Verlag, New York, 1987).CrossRefGoogle Scholar
  20. 20.
    R. L. Rickett, W. F. White, C. S. Walton and J. C. Butler, Trans. ASM 44 (1952) 138.Google Scholar
  21. 21.
    K. Masubuchi, “Analysis of Welded Structures” (Pergamon Press, New York, 1980) p. 189.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • H. T. Lin
    • 1
  • B. A. Chin
    • 1
  1. 1.Materials EngineeringAuburn UniversityUSA

Personalised recommendations