Advertisement

Journal of Materials Science

, Volume 26, Issue 8, pp 2037–2044 | Cite as

Effect of annealing on magnetic properties and microstructure of electroless nickel-copper-phosphorus alloy deposits

  • Kang-Heon Hur
  • Jae-Han Jeong
  • Dong Nyung Lee
Papers

Abstract

The relationship between magnetic properties and microstructure of the as-deposited and heat-treated Ni-Cu-P alloy deposits has been studied by means of vibrating sample magnetometry, differential scanning calorimetry. X-ray diffractometry and hot-stage transmission electron microscopy. The Ni-Cu-P deposits consist of low-P Ni-Cu solid solution crystallites and high-P-low-Ni-Cu amorphous phase. When the deposits are annealed at elevated temperatures, the Ni-Cu crystallites grow rejecting P from themselves and absorbing Cu from the neighbouring amorphous phase, while the P-rich amorphous phase transforms into Ni5P2 phase or into Ni5P2 and Ni3P phases. The metastable Ni5P2 phase finally transforms into the stable Ni3P phase. The non-magnetism observed in Ni-Cu-P deposits having a copper content above 28% in both as-deposited and annealed states, is attributed to their Cu-rich Ni-Cu solid solution crystallites. Nickel phosphides which crystallize from the amorphous phase existing mixed with the Ni-Cu crystallites in the as-deposited state, do not affect the saturated magnetic moment of the deposits.

Keywords

Copper Microstructure Nickel Transmission Electron Microscopy Differential Scanning Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Brenner and G. E. Riddle, US Pat. 2532283/4 (1950).Google Scholar
  2. 2.
    A. W. Goldstein, W. Rostoker, F. Schlossberger and G. Gutzeit, J. Electrochem. Soc. 104 (1957) 104.CrossRefGoogle Scholar
  3. 3.
    A. H. Graham, R. W. Lindsay and H. J. Read, ibid. 112 (1965) 401.CrossRefGoogle Scholar
  4. 4.
    S. H. Park and D. N. Lee, J. Mater. Sci. 23 (1988) 1643.CrossRefGoogle Scholar
  5. 5.
    K. H. Hur, J. H. Jeong and D. N. Lee, ibid. 25 (1990) 2573.CrossRefGoogle Scholar
  6. 6.
    Y. Okamura, S. Futani, K. Kawada, A. Koga and F. Matsui, Kinzoku Hyomen Gijutsu (Jpn) 38 (1987) 424.Google Scholar
  7. 7.
    K. Aoki, O. Takano and S. Ishibashi, ibid. 30 (1979) 126.Google Scholar
  8. 8.
    M. Saito and A. Nakabayashi, US Pat. 4724188 (1988).Google Scholar
  9. 9.
    R. J. Gambino, T. R. McGuire and Y. Nakamura, J. Appl. Phys. 38 (1967) 1253.CrossRefGoogle Scholar
  10. 10.
    B. D. Cullity, “Introduction to Magnetic Materials” (Addison-Wesley, Massachusetts, 1972).Google Scholar
  11. 11.
    P. A. Albert, Z. Kovac, H. R. Liliental, T. R. McGuire and Y. Nakamura, J. Appl. Phys. 38 (1967) 1258.CrossRefGoogle Scholar
  12. 12.
    R. M. Allen and J. B. Vander Sande, Scripta Metall. 16 (1982) 1161.CrossRefGoogle Scholar
  13. 13.
    Srikanth and K. J. Jacob, Mater. Sci. Technol. 5 (1988) 427.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Kang-Heon Hur
    • 1
  • Jae-Han Jeong
    • 1
  • Dong Nyung Lee
    • 1
  1. 1.Department of Metallurgical EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations