Journal of Materials Science

, Volume 26, Issue 8, pp 2026–2030 | Cite as

Stability of zirconia-ceria-yttria ceramics in hostile environments

  • C. Leach
  • N. Khan


The phase chemistry, conductivity in air and forming gas, and stability in warm humid environments of zirconia-ceria-yttria ceramics are described. The compositions studied lie between 12 mol % ceria/88 mol % zirconia and 3 mol % yttria/97 mol % zirconia and fall within the tetragonal phase field of this ternary system. At temperatures below 700° C, reducing atmospheres were found to affect only the conductivity of the end-member ceria-zirconia ceramic, having no effect on the ternary compositions investigated. Compositions containing more than 10 mol % ceria were found to be more stable to stabilizer loss in water vapour at 132° C than those containing less than 10 mol % ceria.


Polymer Atmosphere Zirconia Water Vapour Ceria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Garvie, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruble and A. Heuer (The American Ceramic Society, Columbus, Ohio, 1984) pp. 465–79.Google Scholar
  2. 2.
    J. F. Baumard and P. Abelard, “, pp. 555–71.Google Scholar
  3. 3.
    C. R. A. Catlow, in “Non-stoichiometric oxides”, edited by O. T. Sorensen (Academic Press, New York, 1981) pp. 61–99.Google Scholar
  4. 4.
    U. Drowak, H. Olapinski, D. Fingerle and U. Krohn, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen, M. Ruble and A. Heuer (The American Ceramic Society, 1984) pp. 480–7.Google Scholar
  5. 5.
    B. C. H. Stehle, Chem. Ind. (1986) 651.Google Scholar
  6. 6.
    F. F. Lange, G. L. Dunlop and B. I. Davis, J. Amer. Ceram. Soc. 69 (1986) 237.CrossRefGoogle Scholar
  7. 7.
    T. Sato and M. Shimada, ibid. 68 (1985) 356.CrossRefGoogle Scholar
  8. 8.
    R. Duclos, J. Crampon, Y. Bigay, B. Cales and J. P. Torre, in “Science of Ceramics”, Vol. 14, edited by D. Taylor (Institute of Ceramics, Stoke-on-Trent, England, 1988) pp. 581–6.Google Scholar
  9. 9.
    V. S. Stubican and J. R. Hellmann, in “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia”, edited by L. Hobbs and A. Heuer (The American Ceramic Society, Columbus, Ohio, 1981) pp. 25–36.Google Scholar
  10. 10.
    R. H. Dauskardt, W. Yu and R. O. Ritchie, J. Amer. Ceram. Soc. 70 (1987) C248.CrossRefGoogle Scholar
  11. 11.
    J. G. Duh, H. T. Dai and B. S. Chiou, ibid. 71 (1988) 813.CrossRefGoogle Scholar
  12. 12.
    M. T. Hernandez, J. R. Jurado and P. Duran, Solid State Ionics, to be published.Google Scholar
  13. 13.
    T. Sato and M. Shimada, J. Mater. Sci. 20 (1985) 3988.CrossRefGoogle Scholar
  14. 14.
    D. J. M. Bevan and J. Kordis, J. Inorg. Nucl. Chem. 26 (1964) 1509.CrossRefGoogle Scholar
  15. 15.
    C. A. Leach, J. Mater. Sci. Lett. 6 (1987) 303.CrossRefGoogle Scholar
  16. 16.
    H. Toraya, M. Yoshimura and S. Somiya, J. Amer. Ceram. Soc. 67 (1984) C119.Google Scholar
  17. 17.
    Idem., ibid. 67 (1984) C183.Google Scholar
  18. 18.
    D. S. Patil, N. Venkratamani and V. K. Rohatgi, J. Mater. Sci. 23 (1988) 3367.CrossRefGoogle Scholar
  19. 19.
    N. Khan, C. Leach, Brit. Ceram. Proc. 42 (1989) 133.Google Scholar
  20. 20.
    C. A. Leach, unpublished work (1988).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • C. Leach
    • 1
  • N. Khan
    • 1
  1. 1.Department of MaterialsImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations