Advertisement

Journal of Materials Science

, Volume 26, Issue 8, pp 2015–2022 | Cite as

1000 to 1300 K slow plastic compression properties of Al-deficient NiAl

  • J. D. Whittenberger
  • K. S. Kumar
  • S. K. Mannan
Papers

Abstract

Nickel aluminides containing 37, 38.5 and 40 at % Al have been fabricated by XDtm synthesis and hot pressing. Such materials were compression tested in air under constant velocity conditions between 1000 and 1300 K. Examination of the microstructures of hot pressed and compression tested aluminides indicated that the structure consisted of two phases, γ′ and NiAl, for essentially all conditions, where γ′ was usually found on the NiAl grain boundaries. The stress-strain behaviour of all three intermetallics was similar where flow at a nominally constant stress occurred after about two plastic per cent deformation. Furthermore the 1000 to 1300 K flow stress-strain rate properties are nearly identical for these materials, and they are much lower than those for XDtm processed Ni-50Al [1]. The overall deformation of the two phase nickel aluminides appears to be controlled by dislocation climb in NiAl rather than processes in γ′.

Keywords

Microstructure Nickel Compression Test NiAl Constant Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Whittenberger, R. K. Viswanadham, S. K. Mannan and B. Sprissler, J. Mater. Sci. 25 (1990) 35.CrossRefGoogle Scholar
  2. 2.
    J. L. Smialek and R. F. Hehemann, Met. Trans. 4 (1973) 1571.Google Scholar
  3. 3.
    K. S. Kumar and S. K. Mannan, Martin Marietta Progress Report MML TR 88-66c, Aug. 1988.Google Scholar
  4. 4.
    M. F. Singleton, J. L. Murray and P. Nash, in “Binary Alloy Phase Diagrams, Vol. 1, edited by T. H. Massalski, J. L. Murray, L. H. Bennett and H. Baker (ASM, Metals Park, OH, 1986) p. 140.Google Scholar
  5. 5.
    P. S. Khadkihar, I. E. Locci and K. Vedula, Unpublished research.Google Scholar
  6. 6.
    A. R. C. Westwood, Met. Trans. A 19A (1988) 749.CrossRefGoogle Scholar
  7. 7.
    J. D. Whittenberger, Mater. Sci. Eng. 57 (1983) 77.CrossRefGoogle Scholar
  8. 8.
    K. S. Kumar, S. K. Mannan and S. A. Brown, Unpublished research.Google Scholar
  9. 9.
    D. P. Pope and S. S. Ezz, Int. Metals Rev. 29 (1984) 136.Google Scholar
  10. 10.
    J. H. Schneibel, G. F. Petersen and C. T. Liu, J. Mater. Res. 1 (1986) 68.CrossRefGoogle Scholar
  11. 11.
    J. D. Whittenberger, J. Mater. Sci. 22 (1987) 394.CrossRefGoogle Scholar
  12. 12.
    D. M. Shah, Scripta Met. 17 (1983) 997.CrossRefGoogle Scholar
  13. 13.
    M. V. Nathal, J. O. Diaz and R. V. Miner, in High-Temperature, Ordered Intermetallic Alloys III, Proc. Mat. Res. Soc. Symp., Vol 133, edited by N. S. Stoloff, C. C. Koch, C. T. Lui and A. I. Taub (MRS, Pittsburgh, PA, 1989) pp. 269.Google Scholar
  14. 14.
    J. D. Whittenberger, J. Mater. Sci. 23 (1988) 235.CrossRefGoogle Scholar
  15. 15.
    J. D. Whittenberger, NASA TM 101382, 1988.Google Scholar
  16. 16.
    B. L. Vaandrager and G. M. Pharr, Scripta Metall. 18 (1984) 1337.CrossRefGoogle Scholar
  17. 17.
    S. V. Raj and G. M. Pharr, Mater. Sci. Eng. 81 (1986) 217.CrossRefGoogle Scholar
  18. 18.
    M. R. Harmouche and A. Wolfenden, J. Test. Eval. 15 (1987) 101.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • J. D. Whittenberger
    • 1
  • K. S. Kumar
    • 2
  • S. K. Mannan
    • 2
  1. 1.NASA-Lewis Research CenterClevelandUSA
  2. 2.Martin Marietta LaboratoriesBaltimoreUSA

Personalised recommendations