Journal of Materials Science

, Volume 26, Issue 8, pp 2007–2014 | Cite as

Electrical properties of thin oxidized aluminium films

  • F. M. Reicha
  • M. A. El Hiti
  • P. B. Barna


Thin aluminium films of thickness 40 to 200 nm were deposited on to glass substrates at 573 K in a high vacuum. The deposition was carried out layer by layer and the interfaces between these layers were exposed to oxygen. The electrical resistivity was studied as a function of the film thickness, annealing time, annealing temperature and oxygen pressure. The temperature coefficient of resistivity and the activation energy for the conduction electrons were studied as a function of the film thickness and oxygen pressure. Fuchs-Sondheimer theory for electrical conduction was applied to the experimental results. The mean free path of the conduction electrons was calculated as a function of temperature and agreed well with the theoretical relation.


Oxygen Polymer Aluminium Activation Energy Electrical Conduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Mayadas, J. Appl. Phys. 39 (1968) 4241.CrossRefGoogle Scholar
  2. 2.
    A. Mayadas, F. Feder and R. Rosenberg, J. Vac. Sci. Technol. 6 (1969) 690.CrossRefGoogle Scholar
  3. 3.
    T. Jayadevaish and R. Kirby, Appl. Phys. Lett. 15 (1969) 150.CrossRefGoogle Scholar
  4. 4.
    J. Reimer, J. Vac. Sci. Technol. A2 (1984) 242.CrossRefGoogle Scholar
  5. 5.
    F. Reicha, Candidate dissertation, Budapest, Hungary (1982).Google Scholar
  6. 6.
    E. Dobierzewska-Morzrzmyas, P. Bieganski, A. Rados and A. Bochenek, Thin Solid Films 102 (1983) 77.CrossRefGoogle Scholar
  7. 7.
    E. Tochiskii and N. Belyavskii, Phys. Status Solidi (a) 61 (1980) K21.CrossRefGoogle Scholar
  8. 8.
    C. Tellier and A. Tosser, Thin Solid Films 37 (1976) 207.CrossRefGoogle Scholar
  9. 9.
    P. Desai, H. James and C. Ho, J. Phys. Chem. Ref. Data 13 (1984) 1131.CrossRefGoogle Scholar
  10. 10.
    R. Simons and R. Balluffi, Phys. Rev. 117 (1960) 62.CrossRefGoogle Scholar
  11. 11.
    R. Seth and S. Woods, ibid. B2 (1970) 2961.CrossRefGoogle Scholar
  12. 12.
    P. Barna and F. Reicha, in Proceedings of 8th International Vacuum Congress, Cannes, September 1980, Vol. 1, SupplE. Vide, Les Couches Minces N201 (1980) p. 165.Google Scholar
  13. 13.
    Á. Barna, P. Barna, G. Radnoczi, F. Reicha and L. Toth, Phys. Status Solidi (a) 55 (1979) 427.CrossRefGoogle Scholar
  14. 14.
    M. A. El Hiti, Rev. Physique Appl. 257 (1990) 775.CrossRefGoogle Scholar
  15. 15.
    M. Angadi, J. Mater. Sci. 20 (1985) 761.CrossRefGoogle Scholar
  16. 16.
    M. El Hiti and M. Ahmed, Phys. Status Solidi (a) 114 (1989) 185.CrossRefGoogle Scholar
  17. 17.
    K. Fuchs, Proc. Camb. Phil. Soc. 34 (1938) 100.CrossRefGoogle Scholar
  18. 18.
    E. Sondheimer, Adv. Phys. 1 (1952) 1.CrossRefGoogle Scholar
  19. 19.
    C. Kittel, “An Introduction to Solid State Physics”, 3rd Edn (Wiley Eastern Private, New Delhi, 1971) p. 220.Google Scholar
  20. 20.
    H. Hall, “Solid State Physics” (Wiley, Bristol, England, 1974) p. 233.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • F. M. Reicha
    • 1
  • M. A. El Hiti
    • 2
  • P. B. Barna
    • 3
  1. 1.Department of Physics, Faculty of ScienceMansura UniversityMansuraEgypt
  2. 2.Department of Physics, Faculty of ScienceTanta UniversityTantaEgypt
  3. 3.Research Institute for Technical Physics HASBudapestHungary

Personalised recommendations