Advertisement

Journal of Materials Science

, Volume 27, Issue 14, pp 3969–3976 | Cite as

Measurement and analysis of the fracture of a liquid crystal polymer

  • J. Sweeney
  • B. Brew
  • R. A. Duckett
  • I. M. Ward
Papers

Abstract

The fracture initiation behaviour of injection-moulded plaques of a liquid-crystal polymer is described. Attention is restricted to cracks in the plane of the plaques propagating along the mould fill direction. The material is both anisotropic and inhomogeneous; the latter factor is accommodated by adopting a skin-core model of the plaque structure. The inhomogeneity leads to mixed mode (Modes I and II) fracture in some cases, and both single and mixedmode testing is used. The results can be represented in terms of either stress intensity or strain energy release rate by simple mixed-mode failure criteria.

Keywords

Stress Intensity Liquid Crystal Energy Release Failure Criterion Energy Release Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Thapar and M. J. Bevis, J. Mater. Sci. Lett., 2 (1983) 733.CrossRefGoogle Scholar
  2. 2.
    T. Weng, A. Hiltner and E. Baer, J. Mater. Sci. 21 (1986) 744.CrossRefGoogle Scholar
  3. 3.
    H. Thapar and M. J. Bevis, Plastics Rubber Process. Applic. 12 (1989) 39.Google Scholar
  4. 4.
    D. J. Blundell, R. A. Chivers, A. D. Curson, J. C. Love and W. A. MacDonald, Polymer 29 (1988) 1459.CrossRefGoogle Scholar
  5. 5.
    L. C. Sawyer and M. Jaffe, J. Mater. Sci. 21 (1986) 1897.CrossRefGoogle Scholar
  6. 6.
    Z. Ophir and Y. Ide, Polym. Engng Sci. 23 (1983) 792.CrossRefGoogle Scholar
  7. 7.
    J. Sweeney, B. Brew, R. A. Duckett and I. M. Ward, Polymer, Submitted.Google Scholar
  8. 8.
    J. R. Rice, J. Appl. Mech. 55 (1988) 98.CrossRefGoogle Scholar
  9. 9.
    D. L. Clements, Int. J. Engng Sci. 9 (1971) 257.CrossRefGoogle Scholar
  10. 10.
    G. R. Miller, ibid. 27 (1989) 667.CrossRefGoogle Scholar
  11. 11.
    C. T. Sun and M. G. Manoharan, J. Compos. Mater. 23 (1989) 460.CrossRefGoogle Scholar
  12. 12.
    Z. Suo, Proc. R. Soc. London A427 (1990) 331.CrossRefGoogle Scholar
  13. 13.
    J. G. Williams, Int. J. Fract. 36 (1988) 98.CrossRefGoogle Scholar
  14. 14.
    E. F. Rybicki and M. F. Kanninen, Engng Fract. Mech. 9 (1977) 931.CrossRefGoogle Scholar
  15. 15.
    R. S. Raji, ibid. 28 (1987) 251.CrossRefGoogle Scholar
  16. 16.
    G. C. Sih, P. C. Paris and G. R. Irwin, Int. J. Fract. 1 (1965) 189.CrossRefGoogle Scholar
  17. 17.
    F. Erdogan and G. C. Sih, J. Basic Engng Trans. ASME D 85 (1963) 519.CrossRefGoogle Scholar
  18. 18.
    J. Sweeney, Int. J. Fract. 47 (1991) 69.CrossRefGoogle Scholar
  19. 19.
    J. Sweeney, R. A. Duckett and I. M. Ward, Proc. R. Soc. London A420 (1988) 53.CrossRefGoogle Scholar
  20. 20.
    J. G. Williams, “Fracture Mechanics of Polymers” (Ellis Horwood, Chichester, 1984) p. 75.Google Scholar
  21. 21.
    E. F. Rybicki, T. D. Hernandez Jr, J. E. Deibler, R. C. Knight and S. S. Vinson, J. Compos. Mater. 21 (1987) 105.CrossRefGoogle Scholar
  22. 22.
    E. M. Wu, J. Appl. Mech. 34 (1967) 967.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. Sweeney
    • 1
  • B. Brew
    • 1
  • R. A. Duckett
    • 1
  • I. M. Ward
    • 1
  1. 1.IRC in Polymer Science and TechnologyUniversity of LeedsLeedsUK

Personalised recommendations