Advertisement

Journal of Materials Science

, Volume 27, Issue 14, pp 3963–3968 | Cite as

Microstructural changes of polycrystalline nickel during high-temperature deformation at ambient and high pressures

  • J. Groza
  • S. Meagher
  • R. S. Borch
  • H. W. GreenIII
  • A. K. Mukherjee
Papers

Abstract

The microstructures of polycrystalline nickel, deformed in compression at temperatures of 1000–1500 K at high pressure (1500 MPa) and at ambient (0.1 MPa) pressure, were compared. Dynamic recrystallization and strain-induced grain growth were observed to occur during creep tests at both pressure levels. Our experimental results at ambient pressure are in good agreement with Sandstrom and Lagneborg's theory on dynamic recrystallization. However, high-pressure application considerably retarded recrystallization and grain-growth kinetics. This behaviour was attributed to an increase in the activation energy for grainboundary migration at high pressure.

Keywords

Polymer Microstructure Nickel Migration Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Meagher, R. S. Borch, J. Groza, A. K. Mukherjee and H. W. Green II, Acta Metall. Mater. 40 (1992) 159.CrossRefGoogle Scholar
  2. 2.
    J. P. Poirier, Acta Metall. 26 (1978) 629.CrossRefGoogle Scholar
  3. 3.
    Idem, ibid. 27 (1979) 401.CrossRefGoogle Scholar
  4. 4.
    J. Weertman and J. R. Weertman, in “Constitutive Relations and Their Physical Basis”, edited by S. J. Andersen, J. B. Bilde-Sorensen, N. Hansen, T. Leffers, H. Lilholt, O. B. Pedersen and B. Ralph (Riso National Lab, Roskilde, Denmark, 1987) p. 191.Google Scholar
  5. 5.
    I. Haessner and S. Hofmann, in “Recrystallization of Metallic Materials”, edited by F. Haessner (Riederer, Stuttgart, 1978) p. 76.Google Scholar
  6. 6.
    B. A. Parker, R. G. O'Donnell and N. K. Parle, in “Constitutive Relations and Their Physical Basis”, edited by S. I. Andersen, J. B. Bilde-Sorensen, N. Hansen, T. Leffers, H. Lilholt, O. B. Pedersen and B. Ralph (Riso National Lab, Roskilde, 1987) p. 459.Google Scholar
  7. 7.
    M. J. Luton and C. M. Sellars, Acta Metall 17 (1969) 1033.CrossRefGoogle Scholar
  8. 8.
    C. Norman and S. A. Duran, ibid. 18 (1970) 723.CrossRefGoogle Scholar
  9. 9.
    D. Hardwick and W. J. McG. Tegart, J. Inst. Metals 90 (1961–62) 17.Google Scholar
  10. 10.
    H. Zhu and S. K. Varma, Met. Trans. 21A (1990) 500.CrossRefGoogle Scholar
  11. 11.
    D. Harwick, C. M. Sellars and W. J. McG. Tegart, J. Inst. Metals 90 (1961–62) 21.Google Scholar
  12. 12.
    R. Sandstrom and R. Lagneborg, Acta Metall. 23 (1975) 387.CrossRefGoogle Scholar
  13. 13.
    A. K. Ghosh and R. Raj, ibid. 34 (1986) 447.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. Groza
    • 1
  • S. Meagher
    • 1
  • R. S. Borch
    • 2
  • H. W. GreenIII
    • 2
  • A. K. Mukherjee
    • 1
  1. 1.Department of Mechanical, Aeronautical and Materials ScienceUniversity of CaliforniaDavisUSA
  2. 2.Department of GeologyUniversity of CaliforniaDavisUSA

Personalised recommendations