Advertisement

Journal of Materials Science

, Volume 27, Issue 14, pp 3953–3962 | Cite as

High-temperature creep of the particlehardened commercial Al-Li-Cu-Mg alloy 8090

  • C. K. L. Davies
  • S. PooLay-Mootien
  • R. N. Stevens
  • P. L. Tetlow
Papers

Abstract

Creep of the particle-hardened commercial Al-Li 8090 alloy has been studied at temperatures of 425 and 445 K. The measured stress sensitivity of the minimum creep rates changes abruptly at a given applied stress with stress exponents being around 4–6 at low stresses and 30–40 at high stresses. Creep activation enthalpies were determined by both temperature cycling and by comparing creep rates at two temperatures at a given applied stress, the results from both gave the same unrealistically high values. The internal stresses, σi, developed during creep were determined using the strain-transient dip test. These increased linearly with the applied stress, σa, at low stresses and were effectively constant at high stresses. The minimum creep rate was found to be a simple function of the effective stress, σai, with a stress exponent of between 5 and 6, at all applied stresses. The dislocation and precipitate structure of the alloy was examined before and after creep using thin-film electron microscopy. The initial structure consisted of pancake grains with a well-developed {1 1 0}〈1 1 2〉 type texture. The grains contained well-developed sub-cells and δ′ and S precipitates. The structure developed during creep consisted of dislocation pairs, single dislocations and dislocations loops. There was evidence to suggest that slip took place on both {1 0 0} and {1 1 1} planes. The dislocation loops were most likely to have been Orowan in character and around the rodlike S precipitate, with the coherent δ′ precipitate being sheared by pairs of dislocations. The measured internal stresses result from inhomogeneity of plastic deformation. These stresses increase continuously with applied stress up to the observed macroscopic yield stress, and then become constant. The internal stresses are likely to have arisen from the Orowan loops around S and the behaviour of sub-grain boundaries. The increases in internal stress may have resulted from an increased loop density with increasing applied stress. This rate of increase is likely to slow down if S particles are sheared or fractured at high applied stresses.

Keywords

Applied Stress Internal Stress Creep Rate Dislocation Loop Stress Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Williams and B. Wilshire, Met. Sci. J. 7 (1973) 176.CrossRefGoogle Scholar
  2. 2.
    W. J. Evans and G. F. Harrison, ibid. 10 (1976) 307.CrossRefGoogle Scholar
  3. 3.
    J. P. Dennison, P. D. Holmes and B. Wilshire, Mater. Sci. Engng 33 (1978) 35.CrossRefGoogle Scholar
  4. 4.
    S. Puroshothaman and J. K. Tien, Acta Metall. 26 (1978) 519.CrossRefGoogle Scholar
  5. 5.
    H. Burt, J. P. Dennison and B. Wilshire, Met. Sci. J. 13 (1979) 295.CrossRefGoogle Scholar
  6. 6.
    M. McLean, Proc. Roy. Soc. A373 (1980) 93.CrossRefGoogle Scholar
  7. 7.
    R. A. Stevens and P. E. J. Flewitt, Acta Metall. 29 (1981) 867.CrossRefGoogle Scholar
  8. 8.
    W. J. Evans and G. F. Harrison, Met. Sci. J. 13 (1979) 641.CrossRefGoogle Scholar
  9. 9.
    C. K. L. Davies, A. G. Older and R. N. Stevens, in “Proceedings of 4th International Conference on Creep and Fracture of Engineering Materials and Structures”, Swansea, UK, April 1990, edited by R. W. Evans and B. Wilshire (Institute of Metals, London) pp. 97–107.Google Scholar
  10. 10.
    Idem, J. Mater. Sci. Google Scholar
  11. 11.
    J. C. Gibeling and W. D. Nix, Mat. Sci. Engng 45 (1980) 123.CrossRefGoogle Scholar
  12. 12.
    D. O. Northwood and I. O. Smith, Phys. Status Solidi 88A (1985) 181.CrossRefGoogle Scholar
  13. 13.
    A. R. Ali, M. A. Fahim and F. M. Mansy, J. Mater. Sci. Lett. 8 (1989) 841.CrossRefGoogle Scholar
  14. 14.
    Kyung-Tae Park, Enrique J. Lavernia and Farghalli A. Mohamed Acta. Metall. Mater. 38 (1990) 1873.Google Scholar
  15. 15.
    Y. Miura, A. Matsui, M. Furukawa, M. Nemoto, in “3rd Al-Li Conference”, Oxford, 1985, edited by C. Baker, P. J. Gregson, S. J. Harris and C. J. Peel (Institute of Metals, London, 1986) pp. 427–434.Google Scholar
  16. 16.
    J. M. Fragomeni, B. M. Hillberry and G. H. Sanders, in “5th Al-Li Conference”, Williamsburg, Virginia, 1989, edited by T. H. Sanders and E. A. Starke (MCE, 1989) pp. 837–848.Google Scholar
  17. 17.
    P. Sainfort and P. Guyot, in “3rd Al-Li Conference”, Oxford, 1985, edited by C. Baker, P. J. Gregson, S. Harris and C. J. Peel (Institute of Metals, London, 1986) pp. 420–426.Google Scholar
  18. 18.
    Y. Miura, K. Yusu, S. Aibe, M. Furukawa and M. Nemoto, in “5th Al-Li Conference”, Williamsburg, Virginia, 1989, edited by T. H. Sanders and E. A. Starke (MCE, 1989) pp. 827–836.Google Scholar
  19. 19.
    J. C. Huang and A. J. Ardell, in “4th Al-Li Conference”, Paris, 1987, edited by G. Champier, B. Dubost, D. Miannay and L. Sabetay (Journal de Physique, 1987) pp. 373–383.Google Scholar
  20. 20.
    R. De Jesus and A. J. Ardell, in “5th Al-Li Conference” Williamsburg, Virginia, 1989, edited by T. H. Sanders and E. A. Starke (MCE, 1989) pp. 661–670.Google Scholar
  21. 21.
    S. J. Harris, B. Noble, K. Dinsdale and M. Pridham, in “Aluminium Alloys: Their Physical and Mechanical Properties” Conference, Charlottesville, Virginia, USA, 1986, edited by T. H. Sanders and E. A. Starke (AIME, 1987) Vol. 2, p. 755.Google Scholar
  22. 22.
    M. Hayashi and H. Oikawa, J. Jpn Inst. Light Metals 36 (1986) 768.CrossRefGoogle Scholar
  23. 23.
    E. N. Da C. Andrade and B. Chalmers, Proc. Roy. Soc. 138A (1932) 348.CrossRefGoogle Scholar
  24. 24.
    P. L. Tetlow, PhD thesis, Queen Mary and Westfield College, University of London (1991) p. 123.Google Scholar
  25. 25.
    A. G. Older, PhD thesis, Queen Mary and Westfield College, University of London (1986) p. 239.Google Scholar
  26. 26.
    P. M. Kelly, A. Jostsons, R. G. Blake and J. G. Napier, Phys Status Solidi 31a (1975) 771.CrossRefGoogle Scholar
  27. 27.
    C. K. L. Davies, P. Nash and R. N. Stevens, Acta Metall. 28 (1980) 179.CrossRefGoogle Scholar
  28. 28.
    M. Furukawa, Y. Miura and N. Nemoto, Trans. Jpn Inst. Metals 26 (1985) 225; also in “3rd Al-Li Conference”, Oxford, 1985, edited by C. Baker, P. J. Gregson, S. J. Harris and C. J. Peel (Institute of Metals, London, 1986) pp. 427–434.CrossRefGoogle Scholar
  29. 29.
    W. A. Cassada, G. J. Shiflet and E. A. Starke, Acta Metall. 34 (1986) 367.CrossRefGoogle Scholar
  30. 30.
    J. C. Huang and A. J. Ardell, Mater. Sci. Engng A104 (1988) 149.CrossRefGoogle Scholar
  31. 31.
    S. F. Baumann and D. B. Williams, in “2nd Al-Li Conference”, Monterey, California, 1983, edited by T. H. Sanders and E. A. Starke (AIME, Warrendale, PA, 1984) pp. 17–29.Google Scholar
  32. 32.
    P. J. Gregson and H. M. Flower, J. Mater. Sci. Lett. 3 (1984) 829.CrossRefGoogle Scholar
  33. 33.
    J. M. Silcock, J. Inst. Metals 89 (1961) 203.Google Scholar
  34. 34.
    M. Carrard and J. L. Martin, Phil. Mag. A 56 (1987) 391.CrossRefGoogle Scholar
  35. 35.
    Idem, ibid. 58 (1988) 491.CrossRefGoogle Scholar
  36. 36.
    D. P. Pope and S. S. Ezz, Int. Met. Rev. 29 (1984) 136.CrossRefGoogle Scholar
  37. 37.
    P. A. Flinn, Trans. Met. Soc. AIME 218 (1960) 145.Google Scholar
  38. 38.
    S. Takeuchi and E. Kuramoto, Acta Metall. 21 (1973) 415.CrossRefGoogle Scholar
  39. 39.
    C. C. Wan, H. Smallen and R. V. Carter, in “5th Al-Li Conference”, Williamsburg, Virginia, 1989, edited by T. H. Sanders and E. A. Starke (MCE, 1989) pp. 1553–1562.Google Scholar
  40. 40.
    X. Xiaoxin and J. W. Martin, in “4th Al-Li Conference”, Paris, 1987, edited by G. Champier, B. Dubost, D. Miannay and L. Sabetay (Journal de Physique, 1987) pp. 433–438.Google Scholar
  41. 41.
    D. Khireddine, R. Rahouadj and M. Clavel, Acta Metall. 37 (1989) 191.CrossRefGoogle Scholar
  42. 42.
    H. Mughrabi, Acta Metall. 31 (1983) 1367.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • C. K. L. Davies
    • 1
  • S. PooLay-Mootien
    • 1
    • 2
  • R. N. Stevens
    • 1
  • P. L. Tetlow
    • 1
  1. 1.Department of Materials, Queen Mary and Westfield CollegeUniversity of LondonLondonUK
  2. 2.University of Aix-Marseille IIFrance

Personalised recommendations