Advertisement

Journal of Materials Science

, Volume 27, Issue 14, pp 3889–3896 | Cite as

Water sorption and temperature effects on the dynamic mechanical behaviour of epoxy-matrix particulates

  • G. C. Papanicolaou
  • A. Pappa
Papers

Abstract

The effect of water absorption on the dynamic mechanical properties of composite systems consisting of a cold-setting epoxy matrix filled with iron particles was investigated over a wide temperature range. Storage moduli and loss factors of these composites were determined and the effect of water-conditioning temperature was examined. To minimize the complication of higher-order particle-particle interaction, a low filler content was used. Results indicate a strong dependence of dynamic properties on the water-conditioning temperature. It was found that depending on the water-conditioning temperature the presence of water molecules may either enhance or reduce the dynamic properties of the composite. The observed behaviour was similar to the respective behaviour of the same materials when tested in flexure. This behaviour was explained in terms of the dual action of absorbed water as a plasticizer and a crazing agent which deteriorates in a different way the physical and mechanical integrity of the epoxy-matrix composite.

Keywords

Epoxy Dynamic Property Storage Modulus Wide Temperature Range Composite System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. C. Papanicolaou, S. A. Paipetis and P. S. Theocaris, Colloid Polym. Sci. 256 (1978) 625.CrossRefGoogle Scholar
  2. 2.
    G. C. Papanicolaou and P. S. Theocaris, ibid. 257 (1979) 239.CrossRefGoogle Scholar
  3. 3.
    P. S. Theocaris and G. C. Papanicolaou, Fibre Sci. Technol 12 (1979) 421.CrossRefGoogle Scholar
  4. 4.
    G. C. Papanicolaou, P. S. Theocaris and G. D. Spathis, Colloid Polym. Sci. 258 (1980) 1231.CrossRefGoogle Scholar
  5. 5.
    P. S. Theocaris, G. C. Papanicolaou and G. D. Spathis, Fibre Sci. Technol. 15 (1981) 187.CrossRefGoogle Scholar
  6. 6.
    E. L. McKague, J. E. Halkias and J. D. Reynolds, J. Comp. Mat. 9 (1975) 2.CrossRefGoogle Scholar
  7. 7.
    P. S. Theocaris, E. A. Kontou and G. C. Papanicolaou, Colloid Polym. Sci. 261 (1983) 394.CrossRefGoogle Scholar
  8. 8.
    M. Ashida, T. Noguchi and J. D. Reynolds, J. Appl. Polym. Sci. 30 (1985) 1011.CrossRefGoogle Scholar
  9. 9.
    J. Hertz, “Space Shuttle Materials”, (Society of Aerospace Material and Process Engineers, Vol. 3, 1970) p. 9.Google Scholar
  10. 10.
    C. E. Browning, G. E. Husman and J. M. Whitney, “Moisture Effects in Epoxy Matrix Composites”, Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617 (American Society for Testing and Materials, Philadelphia, 1977) pp. 481–496.CrossRefGoogle Scholar
  11. 11.
    C. E. Browning and J. T. Hartness, in “Composite Materials: Testing and Design” (3rd Conference), ASTM STP 546 (American Society for Testing and Materials, Philadelphia, 1974) pp. 284–302.CrossRefGoogle Scholar
  12. 12.
    R. F. Landel and T. I. Smith, Amer. Rocket Soc. J. 31 (1961) 599.Google Scholar
  13. 13.
    Idem., Rubber Chem. Technol. 35 (1962) 291.CrossRefGoogle Scholar
  14. 14.
    E. L. McKague, J. E. Halkias and J. D. Reynolds, J. Compos. Mater. 9 (1975) 2.CrossRefGoogle Scholar
  15. 15.
    Chi-Hung and G. S. Springer, ibid. 10 (1976) 2.CrossRefGoogle Scholar
  16. 16.
    Y. J. Weitsman, ibid. 10 (1976) 193.CrossRefGoogle Scholar
  17. 17.
    R. J. Morgan and J. J. O'Neal, J. Mater. Sci. 10 (1977) 966.Google Scholar
  18. 18.
    O. Ishai and U. Arnon, in ASTM STP 658, edited by J. R. Vinson (American Society For Testing And Materials, Washington, DC, 1978) pp. 267–276.Google Scholar
  19. 19.
    C. E. Browning, Polym. Eng. Sci. 18 (1978) 16.CrossRefGoogle Scholar
  20. 20.
    A. C. Loos and G. S. Springer, J. Compos. Mater. 13 (1979) 17.CrossRefGoogle Scholar
  21. 21.
    J. D. Keenan, J. C. Seferis and J. F. Quinlivan, J. Appl. Polym. Sci. 24 (1979) 2375.CrossRefGoogle Scholar
  22. 22.
    O. Ishai and U. Armon, J. Testing Eval. 5 (1977) 320.CrossRefGoogle Scholar
  23. 23.
    M. Blikstad, P. O. W. Sjoblom and T. R. Johannesson, J. Compos. Mater. 18 (1984) 32.CrossRefGoogle Scholar
  24. 24.
    C. D. Shirell, in “Advanced Composite Materials—Environmental Effects” edited by J. R. Vinson, ASTM STP 658 (American Society For Testing And Materials, Philadelphia, 1978) p. 2.Google Scholar
  25. 25.
    H. Lee and K. Neville, “Handbook of Epoxy Resins” (McGraw-Hill, New York, 1967) pp. 22–53.Google Scholar
  26. 26.
    P. S. Theocaris, G. C. Papanicolaou and E. A. Kontou, J. Appl. Polym. Sci. 28 (1983) 3145.CrossRefGoogle Scholar
  27. 27.
    R. J. Morgan and J. E. O'Neal, “The Relation Between the Chemical and Physical Structure and the Mechanical Response of Polymers”, Final Scientific Report MDC Q0653 (McDonnell Douglas Research Laboratories, St. Louis, Missouri, 1979).Google Scholar
  28. 28.
    S. A. Paipetis, G. Papanicolaou and P. S. Theocaris, Fibre Sci. Technol. 8 (1975) 221.CrossRefGoogle Scholar
  29. 29.
    Yu. S. Lipatov, Adv. Polym. Sci. 22 (1975) 1.Google Scholar
  30. 30.
    W. J. Mikols, J. C. Seferis, A. Apicella and L. Nicolais, Polym. Compos. 3(3) (1982) 118.CrossRefGoogle Scholar
  31. 31.
    P. J. Hogg and D. Hull, in “Developments in GRP Technology-1 edited by B. Harris (Applied Science, Barking, 1983) pp. 37–90.Google Scholar
  32. 32.
    K. D. Ziegel, J. Colloid Interf. Sci. 29 (1969) 72.CrossRefGoogle Scholar
  33. 33.
    M. Sumita, H. Tsukihi, K. Miyasaka and K. Ishikawa, J. Appl. Polym. Sci. 29 (1984) 1523.CrossRefGoogle Scholar
  34. 34.
    P. S. Theocaris and E. Marketos, Fibre Sci. Technol. 3 (1970) 21.CrossRefGoogle Scholar
  35. 35.
    P. S. Theocaris and S. A. Paipetis, J. Strain Analysis 8 (1973) 286.CrossRefGoogle Scholar
  36. 36.
    G. W. Brassel and K. B. Wischmann, J. Mater. Sci. 9 (1974) 307.CrossRefGoogle Scholar
  37. 37.
    A. P. Molotkov, V. P. Moskvin, Yu. V. Velenev and G. M. Bartenev, Problemi Prochnosti 7 (1971) 39.Google Scholar
  38. 38.
    G. C. Papanicolaou and R. Mercogliano, Plast. Rubber Process. Appl. 6 (1986) 229.Google Scholar
  39. 39.
    E. L. McKaque, J. D. Reynolds and J. E. Halkias, J. Appl. Polym. Sci. 22 (1978) 1643.CrossRefGoogle Scholar
  40. 40.
    J. Mijovic and S. A. Weinstein, Polym. Commun. 26 (1985) 237.Google Scholar
  41. 41.
    J. Mijovic and King-Fu Lin, J. Appl. Polym. Sci. 30 (1985) 2527.CrossRefGoogle Scholar
  42. 42.
    M. J. Adamson, J. Mater. Sci. 15 (1980) 1736.CrossRefGoogle Scholar
  43. 43.
    W. J. Mikols and J. C. Seferis, in “Resins for Aerospace”, edited by C. A. May, ACS Symposium Series No. 132 (1980) p. 293.Google Scholar
  44. 44.
    P. S. Gill, “Measurement of the Effects of Moisture on the Mechanical Properties by Dynamic Mechanical Analysis”, DuPont Co. Technical Note No. TA-86 (1983).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • G. C. Papanicolaou
    • 1
  • A. Pappa
    • 1
  1. 1.Department of Mechanical Engineering, Applied Mechanics LaboratoryUniversity of PatrasPatrasGreece

Personalised recommendations