Advertisement

Journal of Materials Science

, Volume 27, Issue 14, pp 3883–3888 | Cite as

Growth characteristics of β-SiC by chemical vapour deposition

  • Chun-Hsun Chu
  • Yung-Ming Lu
  • Min-Hsiung Hon
Papers

Abstract

A twin-plane re-entrant corner effect (TPRE) in growth of chemical vapour deposited (CVD) β-SiC is described by the film and particles of gas-phase homogeneous nucleation. The structural morphology has been characterized by scanning electron microscopy and transmission electron microscopy. Morphological characteristics of the deposited crystals, such as triangularity, hexagons or facets have been explained in terms of the re-entrant corner effect at twin junctions, which were proposed as preferential growth sites for perfect crystals. For real deposits, screw dislocations and/or the re-entrant corner effect are not expected to be compatible. The majority of chemical vapour deposited SiC crystals have a high defect density comprised of {111} twins and dislocations associated with the process variables. Infrared transmission spectra and electron spectroscopy of chemical analysis indicated that the major chemical bonds of CVD β-SiC were Si-C and C-H bonds. The positions of the 1s or 2p corelevel peaks for deposits are described.

Keywords

Transmission Electron Microscopy Chemical Vapour Deposit Chemical Vapour Process Variable Transmission Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Gabrera and R. V. Coleman, “The Art and Science of Growing Crystals”, 3rd edn, edited by J. J. Gilman (Wiley, New York, 1963) p. 1.Google Scholar
  2. 2.
    W. F. Knippenberg and G. Verspui, Philips Res. Rep. 21 (1963) 113.Google Scholar
  3. 3.
    G. W. Sears, Acta Metall 1 (1953) 457.CrossRefGoogle Scholar
  4. 4.
    R. S. Wanger and W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.CrossRefGoogle Scholar
  5. 5.
    J. V. Milewski, F. D. Gac, J. J. Petrovic and S. R. Skaggs, J. Mater. Sci. 20 (1985) 1160.CrossRefGoogle Scholar
  6. 6.
    L. N. Stranski, Disc. Faraday Soc. 5 (1949) 66.CrossRefGoogle Scholar
  7. 7.
    R. S. Wanger, Acta Metall. 8 (1960) 57.CrossRefGoogle Scholar
  8. 8.
    W. F. Knippenberg and G. Verspui, in “Silicon Carbide 1973”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan, (University of South Carolina Press, Columbia, SC, 1974) p. 92.Google Scholar
  9. 9.
    M. Kitamura, S. Hosoya and I. Sunabara, J. Crystal Growth 47 (1979) 93.CrossRefGoogle Scholar
  10. 10.
    S. Nishino, Y. Hazuki, H. Matsunami and T. Tanaka, J. Electrochem. Soc. 127 (1980) 2674.CrossRefGoogle Scholar
  11. 11.
    J. Chin, P. K. Gantzel and R. G. Hudson, Thin Solid Films 40 (1977) 57.CrossRefGoogle Scholar
  12. 12.
    A. I. Kingon, L. I. Lutz, P. Liaw and R. F. Davis, J. Amer. Ceram. Soc. 66 (1983) 558.CrossRefGoogle Scholar
  13. 13.
    G. S. Fischman and W. T. Petuskey, ibid. 68 (1985) 185.CrossRefGoogle Scholar
  14. 14.
    J. M. Harris, H. C. Gatos and A. F. Witt, J. Electrochem. Soc. 116 (1969) 672.CrossRefGoogle Scholar
  15. 15.
    D. J. Cheng, W. J. Shyy, D. H. Kuo and M. H. Hon, ibid. 134 (1987) 3145.CrossRefGoogle Scholar
  16. 16.
    C. S. Park, J. G. Kim and J. S. Chun, J. Vac. Sci. Technol. A1(4) (1983) 1820.CrossRefGoogle Scholar
  17. 17.
    M. G. So and J. S. Chun, ibid. A6 (1985) 5.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Chun-Hsun Chu
    • 1
  • Yung-Ming Lu
    • 1
  • Min-Hsiung Hon
    • 1
  1. 1.Department of Materials EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations