Advertisement

Journal of Materials Science

, Volume 27, Issue 14, pp 3821–3826 | Cite as

Interfacial stress state present in a “thin-slice” fibre push-out test

  • M. N. Kallas
  • D. A. Koss
  • H. T. Hahn
  • J. R. Hellmann
Papers

Abstract

An analysis of the stress distributions along the fibre-matrix interface in a “thin-slice” fibre push-out test is presented for selected test geometries. For the small specimen thicknesses often required to displace large-diameter fibres with high interfacial shear strengths, finite element analysis indicates that large bending stresses may be present. The magnitude of these stresses and their spatial distribution can be very sensitive to the test configuration. For certain test geometries, the specimen configuration itself may alter the interfacial failure process from one which initiates due to a maximum in shear stress near the top surface adjacent to the indentor, to one which involves mixed mode crack growth up from the bottom surface and/or yielding within the matrix near the interface.

Keywords

Shear Strength Interfacial Shear Interfacial Stress Test Configuration Interfacial Shear Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Marshall, J. Amer. Ceram. Soc. 67 (1984) C-259.CrossRefGoogle Scholar
  2. 2.
    K. T. Faber, S. H. Advani, J. K. Lee and J. T. Lin, ibid. 69 (1986) C208.CrossRefGoogle Scholar
  3. 3.
    D. B. Marshall and W. C. Oliver, ibid. 70 (1987) 542.CrossRefGoogle Scholar
  4. 4.
    D. H. Grande, J. F. Mandell and K. C. C. Hong, J. Mater. Sci 23 (1988) 311.CrossRefGoogle Scholar
  5. 5.
    J. D. Bright, D. K. Shetty, C. W. Griffior and S. Y. Limaye, J. Amer. Ceram. Soc. 72 (1989) 1891.CrossRefGoogle Scholar
  6. 6.
    C. H. Hsuch, Acta Metall. Mater. 38 (1990) 406.Google Scholar
  7. 7.
    R. J. Kerans, P. D. Jero, T. A. Parthasarathy and A. Chetterjee, in “Intermetallic Matrix Composites” edited by D. L. Antan, P. L. Martin, D. B. Miracle and R. McMeeking (MRS, Pittsburgh) (1990) p. 263.Google Scholar
  8. 8.
    S. K. Mital and C. C. Chamis, unpublished research (1990).Google Scholar
  9. 9.
    R. D. Noebe, R. R. Bowman and J. E. Eldridge, in “Intermetallic Matrix Composites” edited by D. L. Antan, P. L. Martin, D. B. Miracle and R. McMeeking (MRS, Pittsburgh) (1990) p. 323.Google Scholar
  10. 10.
    C. A. Moose, D. A. Koss and J. R. Hellmann, ibid.in “.Google Scholar
  11. 11.
    J. W. Laugher, N. J. Shaw, R. T. Bhatt and J. A. Di Carlo, Ceram. Engng Sci. Proc. 7 (1986) 7.Google Scholar
  12. 12.
    M. K. Brun and R. N. Singh, Adv. Ceram. Mater. 3 (1988) 506.CrossRefGoogle Scholar
  13. 13.
    R. Petrich, D. A. Koss and J. R. Hellmann and M. N. Kallas, in “Interfacial Phenomena in Composite Materials '91”, edited by I. Verpoest and F. Jones (Butterworth-Heineman, Oxford, 1991) p. 155.Google Scholar
  14. 14.
    S. Morozumi, M. Kikuchi and T. Nishino, J. Mater. Sci. 16 (1981) 2137.CrossRefGoogle Scholar
  15. 15.
    M. G. Stout, M. L. Lovato, A. G. Zocco and T. R Jervis, Los Alamos Laboratory, LA-11815-ms (1990).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • M. N. Kallas
    • 1
  • D. A. Koss
    • 1
    • 2
  • H. T. Hahn
    • 1
  • J. R. Hellmann
    • 1
    • 2
  1. 1.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations