Journal of Materials Science

, Volume 27, Issue 14, pp 3770–3776 | Cite as

Synthesis and properties of model SiC-Si3N4 interfaces

  • J. J. Petrovic
  • O. Unal
  • T. E. Mitchell


Microscopic and macroscopic SiC-Si3N4 interfacial structures were synthesized and their properties examined. Microscopic interfaces were produced by hot isostatic pressing vapour-liquid-solid SiC whisker-polycrystalline Si3N4 matrix composites without densification aids. Macroscopic interfaces were formed by the chemical vapour deposited Si3N4 coating of large SiC single crystals. The characteristics of these model interfaces were investigated using transmission electron microscopy and indentation fracture. Results showed the microscopic interfaces to contain a small amount of second phase, while the macroscopic interfaces were pristine in nature with no second phase present. Pristine SiC-Si3N4 interfaces were strongly bonded at room temperature, but interfacial strength decreased at elevated temperatures.


Polymer Microscopy Electron Microscopy Transmission Electron Microscopy Elevated Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 187.CrossRefGoogle Scholar
  2. 2.
    P. F. Becher, C. H. Hsueh, P. Angelini and T. N. Tiegs, ibid. 71 (1988) 1050.CrossRefGoogle Scholar
  3. 3.
    A. G. Evans, M. Y. He and J. W. Hutchinson, ibid. 72 (1989) 2300.CrossRefGoogle Scholar
  4. 4.
    H. C. Cao, E. Bischoff, O. Sbaizero, M. Ruhle and A. G. Evans, ibid. 73 (1990), 1691.CrossRefGoogle Scholar
  5. 5.
    O. Unal, PhD thesis, Case Western Reserve University (1991).Google Scholar
  6. 6.
    J. J. Petrovic and G. F. Hurley, in “Fiber Reinforced Ceramic Composites”, edited by K. S. Mazdiyasni (Noyes Publications, Park Ridge, New Jersey, 1990) p. 93.Google Scholar
  7. 7.
    S. R. Nutt and D. S. Phillips, in “Proceedings of the Conference on Interfaces in Metal-Matrix Composites”, New Orleans, March 1986, edited by A. K. Dhingra and S. G. Fishman (The Metallurgical Society, Warrendale, Pennsylvania, 1986) p. 111.Google Scholar
  8. 8.
    T. N. Taylor, J. Mater. Res. 4 (1989) 189.CrossRefGoogle Scholar
  9. 9.
    G. Pezzotti, I. Tanaka, T. Okamoto, M. Koizumi and Y. Miyamoto, J. Amer. Ceram. Soc. 72 (1989) 1461.CrossRefGoogle Scholar
  10. 10.
    I. Tanaka, G. Pezzotti, T. Okamoto, Y. Miyamoto and M. Koizumi, ibid. 72 (1989) 1656.CrossRefGoogle Scholar
  11. 11.
    F. D. Gac, PhD thesis, University of Washington (1988).Google Scholar
  12. 12.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  13. 13.
    F. F. Lange, ibid. 62 (1979) 428.CrossRefGoogle Scholar
  14. 14.
    K. T. Faber and A. G. Evans, Acta Metall. 31 (1983) 565.CrossRefGoogle Scholar
  15. 15.
    J. A. Lely, Ber. Deut. Keram. Ges. 32 (1955) 229.Google Scholar
  16. 16.
    C. C. Chiu, J. Amer. Ceram. Soc. 73 (1990) 1999.CrossRefGoogle Scholar
  17. 17.
    M. Y. He and J. W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053.CrossRefGoogle Scholar
  18. 18.
    Idem., J. Appl. Mech. 56 (1989) 270.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. J. Petrovic
    • 1
  • O. Unal
    • 1
    • 2
  • T. E. Mitchell
    • 1
    • 2
  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Center for Materials ScienceLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations