Journal of Materials Science

, Volume 27, Issue 14, pp 3756–3762 | Cite as

Spherical and rod-like zinc oxide microcrystals: morphological characterization and microstructural evolution with temperature

  • M. Andrés-Vergés
  • M. Martínez-Gallego


Spherical ZnO microcrystals obtained by spray pyrolysis and thermal decomposition methods as well as rod-like ZnO particles (prismatic and needle shaped) prepared from precipitation in aqueous solutions, have been characterized by electron microscopy, X-ray diffraction and infrared spectroscopy. Very different sizes of ZnO particles were obtained from spray pyrolysis. However, only the larger particles (0.7 μm) were found to be slightly deformed by infrared spectroscopy. From thermal decomposition of zinc acetate, fine particles of average size 0.05 μm, rather spherical and agglomeration free were obtained. The role of initial size and morphology in the thermal evolution is fundamental: very fine spherical particles (0.01–0.02 μm), can be sintered to give particles of 0.1–0.3 μm at 875 °C with unchanged morphology. When the temperature induces a change in spherical shape, the first microstructural changes appear to take place through the crystallographic c-axis. However, for rod-like particles, changes begin from the a, b axes, being faster for needle-shaped microcrystals.


Thermal Decomposition Infrared Spectroscopy Agglomeration Microstructural Evolution Decomposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Q. Liu, O. Sakurai, N. Mizutani and M. Kato, J. Mater Sci. 21(1986) 3696.CrossRefGoogle Scholar
  2. 2.
    S. M. Haile, D. W. Johnson Jr, G. H. Wiseman and H. K. Bowen, J. Amer. Ceram. Soc. 72 (1989) 2004.CrossRefGoogle Scholar
  3. 3.
    K. Fujita, K. Murata, T. Nakazawa and I. Kayama, Yogyo-Kyokai-Shi 92 (1984) 227.CrossRefGoogle Scholar
  4. 4.
    M. Andrés-Vergés, A. Mifsud and C. J. Serna, J. Chem. Soc. Faraday. Trans. 86 (1990) 959.CrossRefGoogle Scholar
  5. 5.
    E. Matijevic, Acc. Chem. Res. 14 (1981) 22.CrossRefGoogle Scholar
  6. 6.
    M. Castellano and E. Matijevic, Chem. Marter. 1 (1989) 78.CrossRefGoogle Scholar
  7. 7.
    S. Hayashi, N. Nakamori and H. Kanamori, J. Phys. Soc. Jpn 46 (1979) 176.CrossRefGoogle Scholar
  8. 8.
    M. Andrés-Vergés, A. Mifsud and C. J. Serna, Mater. Lett. 8 (1989) 115.CrossRefGoogle Scholar
  9. 9.
    J. E. Iglesias, J. L. Rendon and C. J. Serna, Appl. Spectrosc. 36 (1982) 325.CrossRefGoogle Scholar
  10. 10.
    C. J. Serna, J. L. Rendon and J. E. Iglesias, Spectrochim. Acta 38A (1982) 797.CrossRefGoogle Scholar
  11. 11.
    M. Ocaña, V. Fornes, J. V. Garcia-Ramos and C. J. Serna, Phys. Chem. Mineral. 14 (1987) 527.CrossRefGoogle Scholar
  12. 12.
    C. J. Serna, M. Ocaña and J. E. Iglesias, J. Phys. C Solid State Phys. 20 (1987) 473.CrossRefGoogle Scholar
  13. 13.
    M. Ocaña, V. Fornes, J. V. Garcia-Ramos and C. J. Serna, J. Solid State Chem. 75 (1988) 364.CrossRefGoogle Scholar
  14. 14.
    T. J. Gardner, D. W. Sproson and G. L. Messing, Materials Research Society Symposium Proceedings, Vol 32 (Elsevier Science, 1984) p. 227.Google Scholar
  15. 15.
    L. Genzel and T. P. Martin, Phys. Status Solid 51b (1972) 91.CrossRefGoogle Scholar
  16. 16.
    Idem, Surface Sci. 34 (1973) 33.CrossRefGoogle Scholar
  17. 17.
    W. Wadia and L. S. Ballomaal, Phys. Chem. Glasses 9 (1968) 115.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • M. Andrés-Vergés
    • 1
  • M. Martínez-Gallego
    • 1
  1. 1.Departamento de Química Inorgánica, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain

Personalised recommendations