Advertisement

Journal of Materials Science

, Volume 27, Issue 14, pp 3719–3725 | Cite as

Internal pressure test for characterizing fast-fracture reliability of grinding wheels

  • S. Santhanam
  • S. Chandrasekar
Papers

Abstract

A constant danger associated with the use of most grinding wheels (vitrified-bond alumina and silicon carbide wheels) is the possibility of fracture during operation. A standard practice is to subject newly manufactured wheels to a spin test and accept wheels that survive. We propose an internal pressure test which offers a simpler, more economical alternative to the spin test for testing grinding wheels. Probabilities of failure in the internal pressure test are correlated with failure probabilities in the spin test using probabilistic fracture mechanics. Results indicate a reasonably good correlation between the two tests, thus demonstrating their equivalence. A scheme for the easy implementation of the internal pressure test to detect damage in grinding wheels is outlined.

Keywords

Polymer Alumina Silicon Carbide Fracture Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Ritter and S. A. Wulf, Amer. Ceram. Soc. Bull. 57 (1978) 186.Google Scholar
  2. 2.
    W. Johnson, Y. L. Bai and S. K. Ghosh, J. Engng Mater. Technol. 108 (1984) 167.CrossRefGoogle Scholar
  3. 3.
    S. A. Haywood, Br. Ceram. Soc. Trans. 83 (1984) 134.Google Scholar
  4. 4.
    R. L. Smith, Br. J. Non-Destr. Test 28 (1986) 73.Google Scholar
  5. 5.
    S. Kumekawa, R. Komanduri and M. C. Shaw, in US Patent No. 4 137 516 (1977).Google Scholar
  6. 6.
    T. Ishikawa, MS thesis, Arizona State University (1981).Google Scholar
  7. 7.
    W. Weibull, J. Appl. Mech. 18 (1951) 293.Google Scholar
  8. 8.
    O. Vardar and I. Finnie, Int. J. Fract. 11 (1975) 495.Google Scholar
  9. 9.
    Y. Matsuo, Bull. JSME 22 (1979) 1053.CrossRefGoogle Scholar
  10. 10.
    S. B. Batdorf and J. G. Crose, J. Appl. Mech. 41 (1974) 459.CrossRefGoogle Scholar
  11. 11.
    S. B. Batdorf and H. L. Heinisch, J. Amer. Ceram. Soc. 61 (1978) 355.CrossRefGoogle Scholar
  12. 12.
    T. H. Service and J. E. Ritter, J. Vibration, Acoustics, Stress, Reliabil. Design 111 (1989) 194.CrossRefGoogle Scholar
  13. 13.
    R. M. Williams and L. R. Swank, J. Amer. Ceram. Soc. 66 (1983) 765.CrossRefGoogle Scholar
  14. 14.
    N. N. Nemeth, J. M. Manderscheid and J. P. Gyekenyesi, Amer. Ceram. Soc. Bull. 68 (1989) 2064.Google Scholar
  15. 15.
    H. Ford and J. M. Alexander, Advanced mechanics of MHS, Longmans, London (1972), pp. 281–282.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • S. Santhanam
    • 1
  • S. Chandrasekar
    • 2
  1. 1.Mechanical Engineering DepartmentVillanova UniversityVillanovaUSA
  2. 2.School of Industrial EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations