Journal of Materials Science

, Volume 26, Issue 6, pp 1699–1704 | Cite as

Surface nucleation and cellular growth kinetics of cordierite glass ceramics containing 3 mol % Y2O3-ZrO2

  • Yuan -Jang Sue
  • San -Yuan Chen
  • Hong -Yang Lu
  • Pouyan Shen


Cordierite-based glass ceramics of the 2MgO∶2Al2O3∶5SiO2 composition with t-ZrO2 (3 mol% Y2O3-ZrO2) and P2O5 addition, was heat-treated isothermally and isochronically for crystallization studies. Major crystalline phases incurred by the heat treatment were t-ZrO2 and α-cordierite. Surface nucleation predominated when edge and corner nucleation in these samples were suppressed regardless of their radii of curvature. Crystallization began with the formation of β-quartz S.S. and its transformation to α-cordierite was followed by prolonged heating. Cellular growth of α-cordierite on the surface of the quenched glass plates, gave a linear kinetics. The activation energy for cellular growth was ∼ 410 kJ mol−1.


Crystallization Activation Energy P2O5 Cordierite Cellular Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Mcmillan, “Glass Ceramics,” 2nd Edn (Academic, New York, 1979) p. 225.Google Scholar
  2. 2.
    T. Matsuhisa and S. Soejima, US Patent 4,280,845 (1981).Google Scholar
  3. 3.
    W. Vogel and W. Holand, “Advances in Ceramics,” Vol. 4, edited by J. H. Simmon, D. R. Uhlmann and G. H. Beall (American Ceramic Society, Columbus OH, 1982).Google Scholar
  4. 4.
    W. Zdaniewski, J. Amer. Ceram. Soc. 58 (1975) 163.CrossRefGoogle Scholar
  5. 5.
    M. D. Karkhanavala and F. A. Hummel, ibid. 36 (1953) 389.CrossRefGoogle Scholar
  6. 6.
    E. A. Giess, J. P. Fletcher and L. W. Herron, ibid. 67 (1984) 549.CrossRefGoogle Scholar
  7. 7.
    M. A. McCoy, W. E. Lee and A. H. Heuer, ibid. 69 (1986) 292.CrossRefGoogle Scholar
  8. 8.
    A. G. Gregory and T. J. Veasey, J. Mater. Sci. 8 (1973) 324.CrossRefGoogle Scholar
  9. 9.
    M. Nogami and M. Tomozawa, J. Amer. Ceram. Soc. 69 (1986) 99.CrossRefGoogle Scholar
  10. 10.
    Y. Shen and R. J. Brook, Ceram. Int. 9 (1983) 39.CrossRefGoogle Scholar
  11. 11.
    B. H. Mussler and M. W. Shafer, Amer. Ceram. Soc. Bull. 64 (1985) 1459.Google Scholar
  12. 12.
    M. A. McCoy and A. H. Heuer, J. Amer. Ceram. Soc. 71 (1988) 673.CrossRefGoogle Scholar
  13. 13.
    G. F. Neilson, J. Appl. Phys. 43 (1972) 3728.CrossRefGoogle Scholar
  14. 14.
    T. I. Barry, J. M. Cox and R. Morrell, J. Mater. Sci. 13 (1978) 594.CrossRefGoogle Scholar
  15. 15.
    K. Langer and W. Schreyer, Am. Mineral. 54 (1969) 1442.Google Scholar
  16. 16.
    E. P. Meagher and G. V. Gibbs, Can. Mineral. 15 (1977) 43.Google Scholar
  17. 17.
    E. M. Rabinovich, in “Advances in Ceramics,” Vol. 4, edited by J. H. Simmons, D. R. Uhlmann and G. H. Bell (American Ceramic. Society, Columbus OH, 1982) pp. 327–333.Google Scholar
  18. 18.
    K. Watanabe, E. A. Giess and M. W. Shafer, J. Mater. Sci. 20 (1985) 508.CrossRefGoogle Scholar
  19. 19.
    W. A. Zdaniewski, J. Amer. Ceram. Soc. 61 (1978) 199.CrossRefGoogle Scholar
  20. 20.
    T. Dumas, A. Ramos. M. Gandais and J. Petiau, J. Mater. Sci. Lett. 4 (1985) 129.CrossRefGoogle Scholar
  21. 21.
    Y. J. Sue, P. Shen, S. Y. Chen and H. Y. Lu, J. Amer. Ceram. Soc. in press.Google Scholar
  22. 22.
    Y. Cheng and D. P. Thompson, Brit. Ceram. Trans. J. 87 (1988) 107.Google Scholar
  23. 23.
    F. S. Chen and A. H. King, Scripta Metall. 21 (1987) 649.CrossRefGoogle Scholar
  24. 24.
    P. W. Mcmillan, “Glass Ceramics”, 2nd Edn (Academic, New York, 1979) p. 95.Google Scholar
  25. 25.
    S. M. Ohlberg and D. W. Strickler, J. Amer. Ceram. Soc. 45 (1962) 170.CrossRefGoogle Scholar
  26. 26.
    W. A. Johnson and R. F. Mehl, Trans. Metall. Soc. AIME 135 (1939) 416.Google Scholar
  27. 27.
    A. Avrami, J. Chem. Phys. 7 (1939) 103.CrossRefGoogle Scholar
  28. 28.
    Idem., ibid. 8 (1940) 212.CrossRefGoogle Scholar
  29. 29.
    K. Watanabe and E. A. Giess, J. Amer. Ceram. Soc. 68 (1985) C102.Google Scholar
  30. 30.
    M. H. Lewis, J. Metcalf-Johansen and P. S. Bell, ibid. 62 (1979) 278.CrossRefGoogle Scholar
  31. 31.
    D. C. Basset, “Principles of Polymer Morphology” (Cambridge University Press, Cambridge, UK, 1981) p. 165.Google Scholar
  32. 32.
    W. Vogel, “Chemistry of Glass” (American Ceramic Society, Columbus OH, 1985) p. 223.Google Scholar
  33. 33.
    P. W. McMillan, “Glass Ceramics”, 2nd Edn (Academic, New York, 1979 p. 57.Google Scholar
  34. 34.
    W. Vogel and K. Gerth, “Catalyzed Crystallization in Glasses”, in Symposium on Nucleation and Crystallization in Glasses and Melts (American Ceramic Society, Columbus OH, 1962).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Yuan -Jang Sue
    • 1
  • San -Yuan Chen
    • 2
  • Hong -Yang Lu
    • 1
  • Pouyan Shen
    • 1
  1. 1.Institute of Materials Science and EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.Materials Research LaboratoriesIndustrial Technology Research InstituteChutungTaiwan

Personalised recommendations