Journal of Materials Science

, Volume 26, Issue 6, pp 1691–1698 | Cite as

Processing-structure relationships for multiphase epoxy matrix systems

  • E. M. Woo
  • J. C. Seferis
  • L. D. Bravenec


A styrene-modified diglycidyl ether of bisphenol-A (DGEBA) epoxy system cured with trimellitic anhydride (TMA) has been investigated to explore processing and structure relationships. During cure, the reactive styrene precipitated with polymerization into phase domains separate from the epoxy phase. Dynamic mechanical analysis and microscopy studies were performed to gain insight to matrix structure. The DMA studies showed that the styrenemodified epoxy system after cure exhibited two partially overlapped but distinct relaxation peaks, which are associated with the Tgs of the polystyrene and epoxy phases. The glass transition of the polystyrene phase was shown to be broadened and the Tg to depend strongly on processing temperature profiles. While the Tg of the epoxy phase increases with curing agent concentrations, the Tg of the polystyrene phase does not. Microscopic studies showed that the styrene-modified system exhibited a rougher fracture surface but did not reveal well defined phase domains in which the precipitated polystyrene component was aggregated. Overall, the study has demonstrated correlations of the kinetic factors in controlling the morphology in reactive modifier-epoxy systems.


Epoxy Dynamic Mechanical Analysis Epoxy Matrix Diglycidyl Ether Diglycidyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Woo and J. C. Seferis, J. Appl. Polym. Sci. (1988) 40 (1990) 1237.CrossRefGoogle Scholar
  2. 2.
    S. G. Chu, H. Jabloner and B. J. Swetlin, US Patent 4 656 208 (1987).Google Scholar
  3. 3.
    A. Noshay and L. M. Robeson, J. Polym. Sci. Chem. Edn 12 (1974) 689.CrossRefGoogle Scholar
  4. 4.
    A. M. Ibrahim, T. J. Quinlivan and J. C. Seferis, ACS Polym. Prep. 26 (1985) 277.Google Scholar
  5. 5.
    P. D. Mclean, A. Garton and W. T. K. Stevenson and K. E. Macphee, Polym. Comp. 7 (1987) 330.CrossRefGoogle Scholar
  6. 6.
    D. A. Shimp, F. A. Hudock and W. S. Bobo, 18th Int. SAMPE Tech. Conf. Ser., (1986) pp. 851.Google Scholar
  7. 7.
    C. B. Bucknall and I. K. Partridge, Polym. Eng. Sci. 26 (1986) 54.CrossRefGoogle Scholar
  8. 8.
    C. B. Bucknall and T. Yoshii, Brit. Polym. J. 10 (1978) 53.CrossRefGoogle Scholar
  9. 9.
    Z. Nir, W. J. Gilwee, D. A. Kourtides and J. A. Parker, Polym. Comp. 6 (1985) 72.CrossRefGoogle Scholar
  10. 10.
    L. T. Manzione and J. K. Gillham, J. Polym. Sci. 26 (1981) 889.Google Scholar
  11. 11.
    R. W. Hewitt, Jr, US Patent 4 284 753 (1981).Google Scholar
  12. 12.
    O. Olabishi, L. M. Robeson and M. T. Shaw, “Polymer-Polymer Miscibility” (Academic, New York, 1979) Ch. 2Google Scholar
  13. 13.
    A. V. Tobolsky, “Properties and Structures of Polymers” (Wiley, New York, 1960) p. 95Google Scholar
  14. 14.
    T. Murayama and J. P. Bell, J. Polym. Sci. A8 (1970) 437.Google Scholar
  15. 15.
    D. S. Kaplan, J. Appl. Polym. Sci. 20 (1976) 2615.CrossRefGoogle Scholar
  16. 16.
    U. T. Kreibich and R. Schmid, J. Polym. Sci., Symp. Edn 53 (1975) 177.CrossRefGoogle Scholar
  17. 17.
    J. L. Racich and J. A. Koutsky, J. Appl. Polym. Sci. 20 (1976) 2111.CrossRefGoogle Scholar
  18. 18.
    H. S. Chu and J. C. Seferis, in “TheRole of the Polymeric Matrix in the Processing and Structural Properties of Composites Materials”, edited by J. C. Seferis and L. Nicolais (Plenum, New York, 1983) p. 53.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • E. M. Woo
    • 1
  • J. C. Seferis
    • 1
  • L. D. Bravenec
    • 2
  1. 1.Polymeric Composites Laboratory, Department of Chemical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Shell Development CompanyHoustonUSA

Personalised recommendations