Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1673–1676 | Cite as

Contribution to the study of SnO2-based ceramics

Part II Effect of various oxide additives on the sintering capacity and electrical conductivity of SnO2
  • S. Zuca
  • M. Terzi
  • M. Zaharescu
  • K. Matiasovsky
Papers

Abstract

The SnO2-based ceramic materials are interesting mainly as candidate materials for stable electrode construction for the aluminium electrolysis and other industrial applications. In all cases, a high density and electrical conductivity are imperative. It was found that the electrical conductivity is closely associated with the density of various oxide mixtures. The investigation into the influence of various oxide additives, namely Sb2O3, CuO, ZnO, La2O3, Cr2O3, Fe2O3, TiO2, MnO2 and MoO3, showed that only CuO increases the density of the composites. The addition of Sb2O3, which is claimed in the literature to increase the electrical conductivity, was found to be effective only in the presence of CuO. Based on the experimental results, the composite containing 2 mass % Sb2O3 and CuO was found to be best suited for the industrial utilization.

Keywords

Oxide Polymer Aluminium TiO2 Electrical Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Kohnke, J. Phys. Chem. Solids 23 (1962) 1557.CrossRefGoogle Scholar
  2. 2.
    C. G. Fonstad and R. H. Rediker, J. Appl. Phys. 42 (1971) 2911.CrossRefGoogle Scholar
  3. 3.
    M. Nagasawa and S. Shionya, J. Phys. Soc. Jpn. 30 (1971) 1213.CrossRefGoogle Scholar
  4. 4.
    Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. 123 (1976) 299.CrossRefGoogle Scholar
  5. 5.
    L. D. Loch, ibid. 110 (1963) 1081.CrossRefGoogle Scholar
  6. 6.
    H. E. Matthews and E. E. Kohnke, J. Phys. Chem. Solids 29 (1968) 653.CrossRefGoogle Scholar
  7. 7.
    C. A. Vincent and D. G. Weston, J. Electrochem. Soc. 119 (1972) 518.CrossRefGoogle Scholar
  8. 8.
    P. G. Orsini, P. Pernice and L. Egiziano, ibid. 128 (1981) 145A.CrossRefGoogle Scholar
  9. 9.
    P. H. Duvineaud and D. Reinhard, Sci. Ceram. 12 (1984) 287.Google Scholar
  10. 10.
    M. R. Parice, S. Bosu and A. Paul, ibid. 11 (1983) 90.Google Scholar
  11. 11.
    M. N. Kucheryavyi and V. A. Polevov, Steklo Keram. 9 (1984) 12.Google Scholar
  12. 12.
    B. G. Alpin, E. V. Degtyareva, V. J. Drozd, N. V. Bulko and S. V. Lysak, Izv. Akad. Nauk SSR 17 (1981) 923.Google Scholar
  13. 13.
    M. Rolin and A. Ducouret, Bull. Soc. Chim. France (1980) 799.Google Scholar
  14. 14.
    M. Zaharescu, S. Mihaiu, S. Zuca and K. Matiasovsky, J. Mater. Sci. submitted.Google Scholar
  15. 15.
    H. Alder, US Patent 4,057, 480 (1977).Google Scholar
  16. 16.
    K. Billehaug and H. A. Øye, Aluminium 56 (1980) 642.Google Scholar
  17. 17.
    T. Chvatal, Sprechsaal Keram. Glass Baust. B107 (1974) 1057.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • S. Zuca
    • 1
  • M. Terzi
    • 1
  • M. Zaharescu
    • 1
  • K. Matiasovsky
    • 2
  1. 1.Centre of Physical ChemistryRomanian AcademyBucharestRomania
  2. 2.Institute of Inorganic Chemistry, Centre for Chemical ResearchSlovak Academy of SciencesBratislavaCzech Republic

Personalised recommendations