Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1631–1634 | Cite as

Heating sequence and hydrogen evolution in alloyed aluminium powders

  • J. L. Estrada
  • J. Duszczyk
  • B. M. Korevaar
Papers

Abstract

The results reported here, showing the effect of a non-continuous degassing sequence on the Al-20Si-3Cu-1 Mg powder, are a complement of previous work concerning the continuous degassing of the same powder. The degassing experiments were carried out, under high vacuum, in the temperature range 20 to 550 °C in a horizontal furnace heated at a uniform heating rate of 2.5 °C min−1. The partial pressures of the released gases were monitored and analysed during the heating phase by a computerized Edwards EQ80F residual gas analyser (RGA). RGA measurements indicate that water and hydrogen are the main degassing products. A complete degassing can only be achieved if the sample is heated up to a temperature where the chemical reactions are finished in the applied time. Thermodynamical equations alone are not enough to explain the kinetics of degassing of aluminium powders. The diffusion of aluminium through its surface oxide layer (Al2O3), described by the self-diffusion of aluminium, can explain to a large extent the kinetics of degassing aluminium powders.

Keywords

Al2O3 Alloyed Aluminium Oxide Layer Surface Oxide High Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Duszczyk, J. L. Estrada, B. M. Korevaar, Z. Fang, T. L. J. De Haan and P. Colijn, Technical Report for Showa Denko K. K. (Tokyo, Japan), Delft University of Technology, The Netherlands, October 1987.Google Scholar
  2. 2.
    J. L. Estrada, J. Duszczyk and B. M. Korevaar, J. Mater. Sci. 26 (1991) 1431.CrossRefGoogle Scholar
  3. 3.
    J. L. Estrada and J. Duszczyk, ibid. 25 (1990) 886.CrossRefGoogle Scholar
  4. 4.
    A. I. Litvintsev and L. A. Arbuzova, Poroshkovaya Metallurgiya 49(1) (1967) 1 (translation).Google Scholar
  5. 5.
    I. Barin and O. Knacke, “Thermochemical properties of inorganic substances” (Springer-Verlag, Berlin, 1987) pp. 11, 32, 34, 316, 323, 584.Google Scholar
  6. 6.
    E. A. Gulbransen and W. S. Wysong, J. Phys. Colloid. Chem. 57 (1947) 1087.CrossRefGoogle Scholar
  7. 7.
    W. W. Smeltzer, J. Electrochem. Soc. 103 (1956) 209.CrossRefGoogle Scholar
  8. 8.
    A. F. Beck, M. A. Heine, E. J. Caule and M. J. Pryor, Corr. Sci. 7 (1967) 1.CrossRefGoogle Scholar
  9. 9.
    B. E. Hayden, W. Wyrobisch, W. Oppermann, S. Hachicha, P. Hofmann and A. M. Bradshaw, Surf. Sci. 109 (1981) 207.CrossRefGoogle Scholar
  10. 10.
    T. S. Lundy and J. F. Murdock, J. Appl. Phys. 33 (1962) 1671.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • J. L. Estrada
    • 1
  • J. Duszczyk
    • 1
  • B. M. Korevaar
    • 1
  1. 1.Laboratory for Materials ScienceDelft University of TechnologyAL, DelftThe Netherlands

Personalised recommendations