Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1627–1630 | Cite as

The optical properties of hot-pressed magnesium fluoride and single-crystal magnesium fluoride in the 0.1 to 9.0 μm range

  • Chen -Shen Chang
  • Min -Hsiung Hon
  • Sheng -Jenn Yang
Papers

Abstract

A polycrystalline high-density magnesium fluoride, fabricated into plates or shapes by hot-pressing, exhibits high in-line transmittance from 2.5 to 6.0 μm, and single-crystal magnesium fluoride extends from 0.1 to 6.0 μm. The ultimate and practical transmittance of hot-pressed magnesium fluoride using intrinsic and extrinsic reflectance, absorptance and scattering mechanisms, are investigated. The intrinsic scattering mechanism due to the polycrystalline structure is basically responsible for the tremendous difference in transmittance in the short wavelength region of the spectrum. The in-line transmittance of polycrystalline and singlecrystal MgF2 is discussed in terms of sample thickness.

Keywords

Polymer Magnesium Fluoride Optical Property Short Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Buckner, H. C. Hafner and N. J. Kreidl, J. Amer. Ceram. Soc. 45 (1962) 435.CrossRefGoogle Scholar
  2. 2.
    US Pat. 4044112(1977).Google Scholar
  3. 3.
    US Pat. 3 920 802 (1977).Google Scholar
  4. 4.
    Hitach, 58-135171 (1983).Google Scholar
  5. 5.
    J. G. J. Peelen and R. Metselaar, J. Appl. Phys. 45 (1974) 216.CrossRefGoogle Scholar
  6. 6.
    W. H. Rhodes, D. J. Sellers and T. Vasilos, J. Amer. Ceram. Soc. 58 (1975) 31.CrossRefGoogle Scholar
  7. 7.
    F. K. Volynets, E. P. Smirnays and N. A. Stsepuro, Sov. J. Opt. Technol. 42 (1975) 256.Google Scholar
  8. 8.
    Eastman Kodak Co., “Kodak Irtran: Infrared Optical Materials” (Kodak publications U-72, Rochester, New York, 1971).Google Scholar
  9. 9.
    R. H. Munis and M. W. Finkel, Appl. Opt. 7 (1968) 2001.CrossRefGoogle Scholar
  10. 10.
    M. Born and E. Wolf, in “Principles of Optics”, 6th Edn (Pergamon Press, New York, 1980) p. 38.Google Scholar
  11. 11.
    C. Kittel, in “Introduction to Solid State Physics”, 6th Edn (Wiley, Singapore, New York, 1986) p. 107.Google Scholar
  12. 12.
    M. Sparks and L. J. Sham, Phys. Rev. B8 (1973) 3037.CrossRefGoogle Scholar
  13. 13.
    H. G. Lipson, B. Bendow, N. E. Massa and S. S. Mitra, ibid. B13 (1976) 2614.CrossRefGoogle Scholar
  14. 14.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, in “Introduction to Ceramics”, 2nd Edn (Wiley, New York, 1975) p. 654.Google Scholar
  15. 15.
    H. C. Van de Hulst, in “Light Scattering by Small Particles” (Wiley, New York, 1957) p. 132.Google Scholar
  16. 16.
    M. Kerker, in “The Scattering of Light and Other Electromagnetic Radiation” (Academic Press, New York, 1969) p. 104.Google Scholar
  17. 17.
    J. A. Savage, in “Infrared Optical Materials and their Antireflection Coatings” (Adam Hilger, UK, 1985) p. 10.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Chen -Shen Chang
    • 1
  • Min -Hsiung Hon
    • 1
  • Sheng -Jenn Yang
    • 2
  1. 1.Research Institute of Metallurgy and Materials TechnologyNational Cheng Kung UniversityTaiwan
  2. 2.Materials Research and Development CenterChung Shan Institute of Science and TechnologyTaiwan

Personalised recommendations