Journal of Materials Science

, Volume 26, Issue 6, pp 1618–1626 | Cite as

Low-frequency dispersion in volume and interfacial situations

  • A. K. Jonscher


The ubiquitous and little-understood phenomenon of low-frequency dispersion (LFD) is described and the experimental evidence for it is summarized for a variety of dielectric and semiconducting systems. Both frequency- and time-domain behaviour are reviewed and it is pointed out that very high charge densities are being stored at low frequencies. The connection between LFD and electrochemical reactions is emphasized. The physical conditions under which LFD can be seen are discussed with particular emphasis on the distinction between interfacial and volume processes. Earlier interpretations of LFD-like phenomena in terms of Maxwell-Wagner processes and fractal geometry of contacts are briefly discussed and found to be insufficient to account for the observed facts. It is concluded that there is likely to be more than one physical or physico-chemical cause giving rise to the variety of LFD phenomena observed in nature but their common feature must be a frequency independent ratio of loss to polarization. We define an “energy criterion” which gives a physical basis for the interpretation of power-law responses and on this basis we propose a new electrochemical model of very general applicability giving the correct dynamic response and having the advantage of not requiring enormous electric fields to account for the very high charge storage observed. Further critical experimental studies are required to elucidate the remaining questions.


Dynamic Response Electrochemical Reaction High Charge Physical Basis Energy Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Jonscher, “Dielectric relaxation in solids” (Chelsea Dielectrics Press, London, 1983).Google Scholar
  2. 2.
    L. A. Dissado and R. M. Hill, J. Chem. Soc. Faraday Trans. 2, 80 (1984) 291.CrossRefGoogle Scholar
  3. 3.
    W. Westphal and A. Sils, “Dielectric constant and loss data”. MIT Technical Report AFML TR 72 39 (1972).Google Scholar
  4. 4.
    A. K. Jonscher, in “Dielectric films on compound semiconductors”, edited by V. J. Kapoor, D. J. Connolly and U. H. Wong, Proc. Electrochem. Soc. 86-3 (1986) 351.Google Scholar
  5. 5.
    A. K. Jonscher, C. Pickup and S. S. H. Zaidi, Semiconductor Sci. and Tech. 1 (1986) 71.CrossRefGoogle Scholar
  6. 6.
    A. K. Jonscher and T. J. McCarthy, ibid. 1 (1986) 150.CrossRefGoogle Scholar
  7. 7.
    S. H. Zaidi and A. K. Jonscher, ibid. 2 (1987) 587.CrossRefGoogle Scholar
  8. 8.
    A. K. Jonscher and M. N. Robinson, Solid State Elect. 30 (1988) 1277.CrossRefGoogle Scholar
  9. 9.
    A. K. Jonscher, J. Chem. Soc. Faraday Trans. 2, 82 (1986) 75.CrossRefGoogle Scholar
  10. 10.
    Idem., in “Energy transfer dynamics”, edited by T. W. Barrett, (Springer, Berlin, 1987) p. 112.CrossRefGoogle Scholar
  11. 11.
    A. K. Jonscher and T. Ramdeen, IEEE Trans. EI-22 (1987) 35.Google Scholar
  12. 12.
    F. Owede and A. K. Jonscher, J. Electrochem. Soc. 135 (1988) 1757.CrossRefGoogle Scholar
  13. 13.
    M. A. Chaudhry and A. K. Jonscher, J. Mater. Sci. 20 (1985) 3581.CrossRefGoogle Scholar
  14. 14.
    G. R. Olhoeft, in Proceedings of the Second International Symposium on the Physics and Chemistry of Porous Media, October 1986, edited by J. R. Banavar, J. Koplik and K. W. Winkler (American Institute of Physics, Conference Proceedings 154) pp. 281–298 (1987).Google Scholar
  15. 15.
    G. R. Olhoeft, Geophysics 50 (1985) 2492.CrossRefGoogle Scholar
  16. 16.
    R. Pethig, IEEE Trans. EI-19 (1984) 453.Google Scholar
  17. 17.
    Idem., “Dielectric and electronic properties of biological materials” (Wiley, New York, 1978).Google Scholar
  18. 18.
    R. M. Hill, L. A. Dissado, J. Pugh, M. G. Broad-Hurst, C. K. Chiang and K. J. Wahlstrand, J. Biol. Phys. 14 (1986) 133.CrossRefGoogle Scholar
  19. 19.
    B. S. Doyle and A. K. Jonscher, J. Mater. Sci. 21 (1986) 284.CrossRefGoogle Scholar
  20. 20.
    M. A. Chaudhry and A. K. Jonscher, ibid. 23 (1988) 208.CrossRefGoogle Scholar
  21. 21.
    A. R. Haidar and A. K. Jonscher, J. Chem. Soc. Faraday Trans, 1, 82 (1986) 3535.CrossRefGoogle Scholar
  22. 22.
    A. K. Jonscher and A. R. Haidar, ibid. 82 (1986) 3553.CrossRefGoogle Scholar
  23. 23.
    A. K. Jonscher and L. Levesque, IEEE Trans. EI-23 (1988) 209.Google Scholar
  24. 24.
    S. H. Liu, T. Kaplan and L. J. Gray, in Proceedings of the IEEE International Symposium on Circuits and Systems, Philadelphia, May 1987.Google Scholar
  25. 25.
    J. C. Wang and J. B. Bates, Solid State Ionics. 18 & 19 (1986) 224.CrossRefGoogle Scholar
  26. 26.
    J. B. Bates, Y. T. Chu and W. T. Stribling, Phys. Rev. Lett. 60 (1988) 627.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. K. Jonscher
    • 1
  1. 1.Royal Holloway and Bedford New CollegeUniversity of LondonEghamUK

Personalised recommendations