Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1609–1617 | Cite as

Interface and fracture of carbon fibre reinforced Al-7 wt% Si alloy

  • M. Yang
  • V. D. Scott
Papers

Abstract

The interface structure in an aluminium-7 wt% silicon alloy reinforced with carbon fibres has been investigated using analytical electron microscopy. Crystals of aluminium carbide (Al4C3) have been identified in interface regions and their structure and growth are discussed. Mechanical properties of the composite have been measured and fracture behaviour studied using acoustic emission analysis in parallel with microstructural examination. The results indicated that the aluminium carbide interfacial reaction had produced a strong fibre matrix bond, but reduced the fibre strength and embrittled the matrix. Consequently, whole fibre bundles failed in a brittle manner in the longitudinal direction with limited pull-out of individual fibres. The findings are discussed in relation to the method used to manufacture the composite.

Keywords

Carbon Fibre Acoustic Emission Interfacial Reaction Fibre Bundle Analytical Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. W. Chou, A. Kelly and A. Okura, Composites 16 (1985) 187.CrossRefGoogle Scholar
  2. 2.
    R. L. Trumper, P. J. Sherwood and A. W. Clifford, Materials in Aerospace, Proceedings of International Conference (Royal Aeronautical Society, London, 1986) p. 234.Google Scholar
  3. 3.
    N. Mykura, International Symposium Cast Reinforced Metal Composites, edited by S. G. Fishman and A. K. Dhingra (ASM International, Pennsylvania, 1988) p. 173.Google Scholar
  4. 4.
    I. H. Khan, Met. Trans, 7A (1976) 1281.CrossRefGoogle Scholar
  5. 5.
    S. J. Baker and W. Bonfield, J. Mater, Sci. 13 (1978) 1329.CrossRefGoogle Scholar
  6. 6.
    A. Okura and K. Motoki, Comp. Sci. Technol. 24 (1985) 243.CrossRefGoogle Scholar
  7. 7.
    N. Eustathopolous, J. C. Joud, P. Desre and J. M. Hicter, J. Mater. Sci. 9 (1974) 1233.CrossRefGoogle Scholar
  8. 8.
    T. Otani, B. McEnaney and V. D. Scott, International Symposium Cast Reinforced Metal Composites, edited by S. G. Fishman and A. K. Dhingra (ASM International, Pennsylvania, 1988) p. 383.Google Scholar
  9. 9.
    L. F. Mondolfo, “Aluminium Alloys, Structure and Properties” (Butterworths, London, 1976) p. 368.CrossRefGoogle Scholar
  10. 10.
    Everett, W. Henshaw, D. G. Simsons and D. J. Land, “Composite Interfaces”, edited by H. Ishida and J. L. Koenig (North-Holland, Amsterdam, 1986) p. 231.Google Scholar
  11. 11.
    G. A. Jeffery and V. Y. Wu, Acta Crystallogr. 20 (1966) 538.CrossRefGoogle Scholar
  12. 12.
    “Smithells Metals Reference Book”, 6 Edn edited by E. A. Brandes (Butterworths, London, 1983) pp. 8–23.Google Scholar
  13. 13.
    M. Taya and R. J. Arsenault, “Metal Matrix Composites—Thermomechanical Behaviour” (Pergamon, Oxford, 1989) p. 247.Google Scholar
  14. 14.
    B. Maruyama and L. Rabenberg, “Interfaces in Metal Matrix Composites”, edited by A. D. Dhingra and S. G. Fishman (ASM International, Pennsylvania, 1986) p. 233.Google Scholar
  15. 15.
    S. J. Harris and A. L. Marsden, “Practical Metallic Composites” (Institute of Metals, London, 1974) B35.Google Scholar
  16. 16.
    P. W. Jackson, D. M. Braddick and P. J. Walker, Fibre Sci. Technol. 5 (1972) 219.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • M. Yang
    • 1
  • V. D. Scott
    • 1
  1. 1.School of Materials ScienceBath UniversityBathUK

Personalised recommendations