Journal of Materials Science

, Volume 26, Issue 6, pp 1588–1600 | Cite as

Phase equilibria in the CaF2-Al2O3-CaO system

  • A. I. Zaitsev
  • N. V. Korolyov
  • B. M. Mogutnov


Computations of phase equilibria in the CaF2-Al2O3-CaO system have been carried out on the basis of experimentally found thermodynamic properties of all intermediate phases and melts. Coordinates of the phase equilibrium boundaries were determined by solving a system of equations expressing equality of chemical potentials of the components in coexisting phases. The nature and quantity of the coexisting phases were established by a search for the Gibbs energy minimum of the system. All the phases of the CaF2-Al2O3-CaO system were taken into consideration. Calculated phase diagrams of the CaO-CaF2, CaO-Al2O3 and CaF2-Al2O3 binary subsystems are in good agreement with the data available in the literature. Isotherms of the CaF2-Al2O3-CaO system were calculated at 1600, 1650, 1723 and 1773 K. A wide region of liquid separation into two phases is observed in the system. One phase is composed of practically pure CaF2 with additions of several mol% of CaO and Al2O3, and the other consists of 50 to 65 mol% of CaF2 only. Eleven invariant points of the CaF2-Al2O3-CaO system include seven ternary eutectics, two ternary peritectics and two points of four-phase monotectic transition. The primary fields of crystallization of all the phases are alongated toward the CaF2 apex, the CaO field being the widest and the 3CaO·Al2O3 field the narrowest. Seven junctions of the CaF2-Al2O3-CaO phase diagram were represented. Computed saturation lines of CaF2-Al2O3-CaO melt with CaO, Al2O3, CaO·6Al2O3 and CaO·2Al2O3, and also the positions of a number of characteristic points, agree well with the experimental data available. The present calculations reveal a number of details and peculiarities of the constitution of the CaF2-Al2O3-CaO phase diagram.


Al2O3 Phase Diagram Gibbs Energy Phase Equilibrium Characteristic Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. I. Zhmoidin and A. K. Chatterjee, “Slags for Metal Refining. Properties Variations of System CaO-Al2O3-CaF2” (Metallugiya, Moscow, 1986) p. 286.Google Scholar
  2. 2.
    K. C. Mills and B. J. Keene, Int. Met. Rev. 1 (1981) 21.Google Scholar
  3. 3.
    R. Ries and K. Schwerdtfeger, Arch. Eisenh-ü-ttenw. 51 (1980) 123.CrossRefGoogle Scholar
  4. 4.
    Yu. G. Izmlov, “Issledovaniye sistemy CaO-Al2O3-CaF2 v usloviyakh ispareniya ftoristykh soedinenii”, Avtoref. kand. diss., Chelyabinsk (1976).Google Scholar
  5. 5.
    D. Ya. Povolotskii, G. P. Vyatkin and Yu. G. Izmailov, Sb. Nauch. Trudov Chelyabinsk. Politekhn. Inst. No. 166 (1975) 35.Google Scholar
  6. 6.
    R. Nafziger, High Temp. Sci. 5 (1974) 414.Google Scholar
  7. 7.
    A. K. Chatterjee and G. I. Zhmoidin, J. Mater. Sci. 7 (1972) 93.CrossRefGoogle Scholar
  8. 8.
    G. S. Smirnov, A. K. Chatterjee and G. I. Zhmoidin, ibid. 8 (1973) 1278.CrossRefGoogle Scholar
  9. 9.
    W. Gutt, A. K. Chatterjee and G. I. Zhmoidin, ibid. 5 (1970) 960.CrossRefGoogle Scholar
  10. 10.
    A. K. Chatterjee and G. I. Zhmoidin, Izv. Akad. Nauk SSSR, Neorg. Mater. 10 (1974) 1846.Google Scholar
  11. 11.
    Idem, ibid. 8 (1972) 883.Google Scholar
  12. 12.
    G. I. Zhmoidin and A. K. Chatterjee, Izv. Akad. Nauk SSSR, Metally No. 6 (1971) 46.Google Scholar
  13. 13.
    A. K. Chatterjee, T. Ya. Malysheva and G. I. Zhmoidin, ibid. No. 6 (1970) 58.Google Scholar
  14. 14.
    L. H. Hillert, Acta Polytechn, Scand. 90 (1970) 115.Google Scholar
  15. 15.
    G. I. Zhmoidin, Izv. Akad. Nauk, Metally No. 6 (1969) 9.Google Scholar
  16. 16.
    M. W. Davies and F. A. Wright, Chem. Industry (1970) 359.Google Scholar
  17. 17.
    G. J. W. Kor and F. D. Richardson, Trans. AIME 245 (1969) 319.Google Scholar
  18. 18.
    D. M. Edmunds and J. Taylor, J. Iron. Steel Inst. 210 (1972) 280.Google Scholar
  19. 19.
    M. Allibert, J. F. Wadier and A. Mitchell, Ironmaking Steelmaking 5 (1978) 211.Google Scholar
  20. 20.
    P. P. Evseev, L. I. Sinyukova and A. F. Fillipov, Izv. Vuzov, Chernaya Metallurgiya 1 (1966) 74.Google Scholar
  21. 21.
    A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, Z. Fiz. Khim. 64 (1990) 1494.Google Scholar
  22. 22.
    Idem, ibid. 64 (1990) 1505.Google Scholar
  23. 23.
    Idem, J. Chem. Thermod. 22 (1990) 513.CrossRefGoogle Scholar
  24. 24.
    Idem, ibid. 22 (1990) 531.CrossRefGoogle Scholar
  25. 25.
    P. Pascal, Z. Elektrochem. 19 (1913) 610.Google Scholar
  26. 26.
    R. W. Nurse, J. H. Welch and A. J. Majumdar, Trans. Br. Ceram. Soc. 64 (1965) 409.Google Scholar
  27. 27.
    R. V. Kumar and D. A. R. Kay, Met. Trans. 16B (1985) 107.CrossRefGoogle Scholar
  28. 28.
    A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov, Akad. Nauk. SSSR, Rasplavy 3 (1989) 58.Google Scholar
  29. 29.
    T. F. Raichenko and T. I. Litvinova, Izv. Akad. Nauk, Metally No. 4 (1971) 105.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. I. Zaitsev
    • 1
  • N. V. Korolyov
    • 1
  • B. M. Mogutnov
    • 1
    • 2
  1. 1.I.P. Bardin Central Research Institute of Ferrous MetallurgyMoscowUSSR
  2. 2.Laboratory of Thermodynamic InvestigationsMoscowUSSR

Personalised recommendations