Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1565–1576 | Cite as

Alternating-current electrical properties of random metal-insulator composites

  • In -Gann Chen
  • W. B. Johnson
Papers

Abstract

The complex a.c. impedance of three different random metal-insulator composites near their percolation threshold has been studied. These three metal-insulator systems include different shapes of nickel particles (filamentary and nodular shapes) in a matrix of polypropylene and silver particles in the matrix of potassium chloride. By using different metal-insulator structures and phases it is possible to elucidate the effect of different metal particle shapes and types of insulator phase on the electrical properties of these composites near their percolation threshold. Electrical properties, including d.c. conductivity, a.c. conductance, capacitance and dielectric loss tangent, of these metal-insulator composites as a function of metal volume fraction and frequency (5 Hz to 13 MHz) are presented. The results are correlated with structural characterization of these composites and are used to examine the applicability of different electrical transport models on these composite materials. The effect of different metal particle shapes on the percolation threshold and the power-law dependent percolation phenomenon is also discussed.

Keywords

Polypropylene Electrical Property Dielectric Loss Transport Model Loss Tangent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Klein, Adv. Mater. Process 1 (1986) 28.Google Scholar
  2. 2.
    S. K. Bhattacharya and A. C. D. Chaklader, Polym.-Plast. Technol. Engng 19 (1982) 21.CrossRefGoogle Scholar
  3. 3.
    In-Gann Chen, S. Sen and D. M. Stefanescu, Appl. Phys. Lett. 52 (1988) 1355.CrossRefGoogle Scholar
  4. 4.
    F. H. Streitz, M. Z. Cieplak, Gang Xiao, A. Gavrin, A. Bakhshai and C. L. Chien, ibid. 52 (1988) 927.CrossRefGoogle Scholar
  5. 5.
    S. R. Broadbent and J. M. Hammersley, Proc. Cambridge Philos. Soc. 53 (1957) 629.CrossRefGoogle Scholar
  6. 6.
    B. Abels, H. L. Pinch and J. I. Gittleman, Phys. Rev. Lett. 35 (1975) 247.CrossRefGoogle Scholar
  7. 7.
    D. M. Grannan, J. C. Garland and D. B. Tanner, ibid. 46 (1981) 375.CrossRefGoogle Scholar
  8. 8.
    D. Stauffer, Phys. Rep. 54 (1979) 1.CrossRefGoogle Scholar
  9. 9.
    R. Zallen, “The Physics of Amorphous Solids” (Wiley, New York, 1983) Ch. 4.CrossRefGoogle Scholar
  10. 10.
    K. T. Chung, A. Sabo and A. P. Pica, J. Appl. Phys. 53 (1982) 867.Google Scholar
  11. 11.
    In-Gann Chen and W. B. Johnson, J. Mater. Sci. 21 (1986) 3162.CrossRefGoogle Scholar
  12. 12.
    Y. Song, T. W. Noh, S.-I. Lee and J. R. Gaines, Phys. Rev. B 33 (1986) 904.CrossRefGoogle Scholar
  13. 13.
    B. V. Hamon, Austral. J. Phys. 6 (1953) 305.CrossRefGoogle Scholar
  14. 14.
    In-Gann Chen, PhD thesis, Ohio State University (1987).Google Scholar
  15. 15.
    H. Scher and R. Zallen, J. Chem. Phys. 53 (1970) 3759.CrossRefGoogle Scholar
  16. 16.
    I. Balberg and N. Binenbaum, Phys. Rev. B 35 (1987) 8749.CrossRefGoogle Scholar
  17. 17.
    A. Malliaris and D. T. Turner, J. Appl. Phys. 42 (1971) 614.CrossRefGoogle Scholar
  18. 18.
    I. Balberg and S. Bozowski, Solid State Commun. 44 (1982) 551.CrossRefGoogle Scholar
  19. 19.
    D. M. Bigg, Polym. Eng. Sci. 19 (1979) 1188.CrossRefGoogle Scholar
  20. 20.
    I. Balberg and N. Binenbaum, Phys. Rev. B 28 (1983) 3799.CrossRefGoogle Scholar
  21. 21.
    I. Balberg, N. Binenbaum and N. Wagner, Phys. Rev. Lett. 52 (1984) 1465.CrossRefGoogle Scholar
  22. 22.
    S. H. Kwan, F. G. Shin and W. L. Tsui, J. Mater. Sci. 19 (1984) 4093.CrossRefGoogle Scholar
  23. 23.
    F. F. T. de Araujo and H. M. Rosenberg, J. Phys. D: Appl. Phys. 9 (1976) 1025.CrossRefGoogle Scholar
  24. 24.
    A. B. Harris, Phys. Rev. B. 28 (1983) 2614.CrossRefGoogle Scholar
  25. 25.
    D. Deptuck, J. P. Harrison and P. Zawadzki, Phys. Rev. Lett. 54 (1985) 913.CrossRefGoogle Scholar
  26. 26.
    F. Carmona, P. Prudhon and F. Barreau, Solid State Commun. 51 (1984) 255.CrossRefGoogle Scholar
  27. 27.
    S. Kirkpatrick, Rev. Mod. Phys. 45 (1973) 574.CrossRefGoogle Scholar
  28. 28.
    J. P. Straley, in “Electrical Transport and Optical Properties of Inhomogeneous Media-1977”, edited by J. C. Garland and D. B. Tanner, AIP Proceedings No. 40 (American Institute of Physics, New York, 1978) pp. 118–127.Google Scholar
  29. 29.
    R. B. Laibowitz and Y. Gefen, Phys. Rev. Lett. 53 (1984) 380.CrossRefGoogle Scholar
  30. 30.
    I. Webman, J. Jortner and M. H. Cohen, Phys. Rev. B 16 (1977) 2593.CrossRefGoogle Scholar
  31. 31.
    Y. Gefen, A. Aharony and S. Alexander, Phys. Rev. Lett. 50 (1983) 77.CrossRefGoogle Scholar
  32. 32.
    A. K. Jonscher, Nature 267 (1977) 673.CrossRefGoogle Scholar
  33. 33.
    Idem., J. Mater. Sci. 16 (1981) 2037.CrossRefGoogle Scholar
  34. 34.
    D. P. Almond, C. C. Hunter and A. R. West, ibid. 19 (1984) 3236.CrossRefGoogle Scholar
  35. 35.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”, 2nd Edn (Wiley, New York, 1976) p. 937.Google Scholar
  36. 36.
    C. C. Chen and Y. C. Chen, Phys. Rev. Lett. 54 (1985) 2529.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • In -Gann Chen
    • 1
  • W. B. Johnson
    • 1
  1. 1.Department of Materials ScienceOhio State UniversityColumbusUSA

Personalised recommendations