Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1556–1564 | Cite as

Growth and optical properties of ZnIn2Se4 films

  • H. S. Soliman
  • M. M. El-Nahass
  • A. Qusto
Papers

Abstract

Thin films of ZnIn2Se4 were deposited on quartz substrates at 297 K by the conventional thermal evaporation technique. The as-deposited films were amorphous. On annealing at 623 K under vacuum for 3 h, the films crystallized with a preferred (1 1 2) orientation corresponding to the chalcopyrite-type structure. Films deposited on a quartz substrate heated to 573 K were also crystalline. The optical constants were computed from the measured transmittance and reflectance at normal incidence of light in the wavelength range 400 to 2000 nm. The analysis of the data gave a direct gap of 2.2 and 2.06 eV for the amorphous and crystallized films, respectively. The dispersion curve exhibited a peak above the absorption edge. An indirect gap of 1.8 eV for the crystallized films and a direct forbidden gap of 1.75 eV for the amorphous films were also deduced. A direct allowed transition with a gap of 2.065 eV and an indirect transition with a gap of 1.69 eV were deduced for the crystalline films deposited on the heated substrate.

Keywords

Absorption Edge Dispersion Curve Normal Incidence Optical Constant Thermal Evaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hahn, G. Frank, W. W. Klingler, A. Störger and G. Störger, Z. Anorg. Allg. Chem. 279 (1955) 241.CrossRefGoogle Scholar
  2. 2.
    N. A. Goryunova, V. I. Kotovich and V. A. Frankkamenetskii, Dokl. Akad. Nauk SSSR 103 (1955) 659.Google Scholar
  3. 3.
    J. A. Beun, R. Nitsche and M. Lichtensteiger, Physica 27 (1961) 448.CrossRefGoogle Scholar
  4. 4.
    P. Manca, F. Raga and A. Spiga, Phys. Status Solidi (a) 16 (1973) 105.CrossRefGoogle Scholar
  5. 5.
    Idem, Il Nuovo Cimenta 19B (1974) 15.CrossRefGoogle Scholar
  6. 6.
    F. Fortin and F. Raga, Solid State Commun. 14 (1974) 847.CrossRefGoogle Scholar
  7. 7.
    J. Filipowicz, Tagungsbericht des Kolloquiums 4 des Berg -und Hüttenmännischen Tages, Frieberg, July 1977, p. 204.Google Scholar
  8. 8.
    S. I. Radautsan, A. N. Georgobiani and I. M. Tiginyanu, Progr. Cryst. Growth Charact. 10 (1985) 403.CrossRefGoogle Scholar
  9. 9.
    J. Filipowicz, N. Romeo and L. Tarricone, Solid State Commun. 38 (1980) 619.CrossRefGoogle Scholar
  10. 10.
    M. M. El-nahas, H. S. Soliman, N. El-Kadry, A. Y. Morsy and S. Yaghmour, J. Mater. Sci. Lett. 7 (1988) 1050.CrossRefGoogle Scholar
  11. 11.
    F. Abele and M. L. Theye, Surface Sci. 5 (1966) 325.CrossRefGoogle Scholar
  12. 12.
    O. S. Heavens, “Optical Properties of Thin Solid Films” (Dover, New York, 1965) p. 55.Google Scholar
  13. 13.
    J. L. Pankove, “Optical Processes in Semiconductors” (Prentice-Hall, New York, 1971).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • H. S. Soliman
    • 1
  • M. M. El-Nahass
    • 1
  • A. Qusto
    • 2
  1. 1.Faculty of EducationAin Shams UniversityHeliopolis, CairoEgypt
  2. 2.Faculty of ScienceKing Abdulaziz UniversityJeddaSaudi Arabia

Personalised recommendations