Journal of Materials Science

, Volume 26, Issue 6, pp 1545–1555 | Cite as

Strength characterization of MgO-partially stabilized zirconia

  • R. K. Govila


The flexural strength of MgO-partially stabilized zirconia was evaluated as a function of temperature (20–1300 °C in air environment), applied stress and time. The indentation-induced-flaw technique did not produce well-defined symmetrical cracks of controlled size, whose length (on the tensile surface) or depth (on the fracture face) can be measured unambiguously, and therefore it should not be used for measuring fracture toughness. The sudden decrease in fracture strength at moderately low temperatures (200–800 °C) is believed to be due to stability of the tetragonal phase and relative decrease in the extent of the stress-induced martensitic phase transformation of the tetragonal to monoclinic phase. Flexural stress rupture testing at 500–800 °C in air indicated the material's susceptibility to time-dependent failure, and outlines safe applied stress levels for a given temperature. Stress rupture testing at 1000 °C and above at low applied stress levels showed bending of specimens, indicating the onset of plasticity or viscous flow of the glassy phase and consequent degradation of material strength.


Zirconia Fracture Toughness Flexural Strength Fracture Strength Monoclinic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Bryzik and R. Kamo, “Tacom/Cummins Adiabatic Engine Program”, 1983 International Congress and Exposition, SAE Paper 830314, Detroit, MI, February 1983.Google Scholar
  2. 2.
    M. Marmach, D. Servent, R. H. J. Hannink, M. J. Murray and M. V. Swain, “Toughened PSZ Ceramics — Their Role as Advanced Engine Components”, ibid., paper 830318.Google Scholar
  3. 3.
    M. E. Woods, W. F. Mandler Jr and T. L. Scofield, Ceram. Bull. 64 (1985) 287.Google Scholar
  4. 4.
    Idem, ibid, 64 (1985) 292.Google Scholar
  5. 5.
    D. W. Richerson, ibid. 64 (1985) 282.Google Scholar
  6. 6.
    R. H. J. Hannink, M. Marmach, M. J. Murray and M. V. Swain, See Table I.Google Scholar
  7. 7.
    R. Stevens, “An Introduction to Zirconia”, Magnesium Elektron Ltd, June 1983.Google Scholar
  8. 8.
    E. M. Logothetis, “Zirconia Oxygen Sensors in Automotive Applications”, “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia”, edited by A. H. Heuer and L. W. Hobbs (American Ceramic Society, Columbus, Ohio, 1981) p. 388.Google Scholar
  9. 9.
    R. C. Garvie, C. Urbani, D. R. Kennedy and J. C. McNeuer, J. Mater. Sci. 19 (1984) 3224.CrossRefGoogle Scholar
  10. 10.
    N. Claussen, M. Ruhle and A. H. Heuer (eds), “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia” (American Ceramic Society, Columbus, OH, 1984).Google Scholar
  11. 11.
    M. Ruhle and A. H. Heuer, “Phase Transformations in ZrO2-Containing Ceramics: II, The Martensitic Reaction in t-ZrO2”, ibid. pp. 14–32.Google Scholar
  12. 12.
    D. L. Porter and A. H. Heuer, J. Amer. Ceram. Soc. 60 (1977) 183.CrossRefGoogle Scholar
  13. 13.
    D. L. Porter, A. G. Evans and A. H. Heuer, Acta Metall. 27 (1979) 1649.CrossRefGoogle Scholar
  14. 14.
    F. F. Lange, J. Mater. Sci. 17 (1982) 225.CrossRefGoogle Scholar
  15. 15.
    Idem, ibid. 17 (1982) 235.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 17 (1982) 240.CrossRefGoogle Scholar
  17. 17.
    Idem, ibid. 17 (1982) 247.CrossRefGoogle Scholar
  18. 18.
    Idem, ibid. 17 (1982) 255.CrossRefGoogle Scholar
  19. 19.
    R. H. J. Hannink and M. V. Swain, J. Aust. Ceram. Soc. 18 (1982) 53.Google Scholar
  20. 20.
    I. Oda, M. Matsui and T. Soma, “Strength and Durability of PSZ Ceramics”, paper presented at the International Symposium on Ceramic Components for Engine, Hakone, Japan, October 1983.Google Scholar
  21. 21.
    K. Tsukuma, Y. Kubota and T. Tsukidate, “Thermal and Mechanical Properties of Y2O3-Stabilized TZP”, in “Advances in Ceramics”, Vol. 12, “Science and Technology of Zirconia”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) pp. 382–90.Google Scholar
  22. 22.
    M. Matsui, T. Soma and I. Oda, J. Amer. Ceram. Soc. 69 (1986) 198.CrossRefGoogle Scholar
  23. 23.
    Nilcra Ceramics, Inc., Elmhurst, IL, USA, Product Update Brochure (1985).Google Scholar
  24. 24.
    R. H. J. Hannink and R. C. Garvie, J. Mater. Sci. 17 (1982) 2637.CrossRefGoogle Scholar
  25. 25.
    R. H. J. Hannink, ibid. 18 (1983) 457.CrossRefGoogle Scholar
  26. 26.
    D. B. Marshall, J. Amer. Ceram. Soc. 69 (1986) 173.CrossRefGoogle Scholar
  27. 27.
    A. G. Evans and R. M. Cannon, Acta Metall. 34 (1986) 761.CrossRefGoogle Scholar
  28. 28.
    P. F. Becher, J. Mater. Sci. 21 (1986) 297.CrossRefGoogle Scholar
  29. 29.
    P. F. Becher and M. K. Ferber, ibid. 22 (1987) 973.CrossRefGoogle Scholar
  30. 30.
    A. H. Heuer, J. Amer. Ceram. Soc. 70 (1987) 689.CrossRefGoogle Scholar
  31. 31.
    R. K. Govila, Technical Report TR 80-18 (Army Materials and Mechanics Research Center, Watertown, MA, 1980).Google Scholar
  32. 32.
    R. K. Govila, J. A. Herman and N. Arnon, “Stress Rupture Test Rig Design for Evaluating Ceramic Material Specimens”, Paper No. 85-GT-181, ASME Gas Turbine Meeting, 18–21 March, 1985, Houston, Texas.Google Scholar
  33. 33.
    R. K. Govila, Acta Metall. 20 (1972) 447.CrossRefGoogle Scholar
  34. 34.
    J. J. Petrovic, L. A. Jacobson, P. K. Talty and A. K. Vasudevan, J. Amer. Ceram. Soc. 58 (1975) 113.CrossRefGoogle Scholar
  35. 35.
    R. K. Govila, K. R. Kinsman and P. Beardmore, J. Mater. Sci. 14 (1979) 1095.CrossRefGoogle Scholar
  36. 36.
    R. K. Govila, J. Amer. Ceram. Soc. 63 (1980) 319.CrossRefGoogle Scholar
  37. 37.
    R. K. Govila, P. Beardmore and K. R. Kinsman, “Strength Characterization and Nature of Crack Propagation in Ceramic Materials”, in “Fractography and Materials Science”, ASTM STP 733, edited by L. N. Gilbertson and R. D. Zipp (American Society for Testing and Materials, Philadelphia, PA, 1981) pp. 225–45.CrossRefGoogle Scholar
  38. 38.
    B. R. Lawn, A. G. Evans and D. B. Marshall, J. Amer. Ceram. Soc. 63 (1980) 574.CrossRefGoogle Scholar
  39. 39.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 533.CrossRefGoogle Scholar
  40. 40.
    P. Ghantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 539.CrossRefGoogle Scholar
  41. 41.
    R. K. Govila, J. Mater. Sci. 23 (1988) 1141.CrossRefGoogle Scholar
  42. 42.
    Idem, ibid. 19 (1984) 2111.CrossRefGoogle Scholar
  43. 43.
    R. K. Govila, K. R. Kinsman and P. Beardmore, ibid. 13 (1978) 2081.CrossRefGoogle Scholar
  44. 44.
    L. J. Schioler, “Effect of Time and Temperature on Transformation Toughened Zirconias”, Technical Report TR 87-29, US Army Materials Technology Laboratory, Watertown, MA, June 1987.Google Scholar
  45. 45.
    J. Drennan and R. H. J. Hannink, J. Amer. Ceram. Soc. 69 (1986) 541.CrossRefGoogle Scholar
  46. 46.
    R. K. Govila, J. A. Mangels and J. R. Baer, ibid. 68 (1985) 413.CrossRefGoogle Scholar
  47. 47.
    R. K. Govila, Am. Ceram. Soc. Bull. 65 (1986) 1287.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • R. K. Govila
    • 1
  1. 1.Material Systems Reliability Department, Scientific Research LaboratoryFord Motor CompanyDearbornUSA

Personalised recommendations