Journal of Materials Science

, Volume 26, Issue 6, pp 1531–1544 | Cite as

Heterogeneous nucleation of solidification of cadmium particles embedded in an aluminium matrix

  • D. L. Zhang
  • K. Chattopadhyay
  • B. Cantor


A hypomonotectic alloy of Al-4.5wt%Cd has been manufactured by melt spinning and the resulting microstructure examined by transmission electron microscopy. As-melt spun hypomonotectic Al-4.5wt%Cd consists of a homogeneous distribution of faceted 5 to 120 nm diameter cadmium particles embedded in a matrix of aluminium, formed during the monotectic solidification reaction. The cadmium particles exhibit an orientation relationship with the aluminium matrix of {111}Al//{0001}Cd and 〈110〉AlAl//〈11¯20> Cd, with four cadmium particle variants depending upon which of the four {111}Al planes is parallel to {0001}Cd. The cadmium particles exibit a distorted cuboctahedral shape, bounded by six curved {100}Al//{20¯23}Cd facets, six curved {111}Al/{40¯43}Cd facets and two flat {111}Al//{0001}Cd facets. The as-melt spun cadmium particle shape is metastable and the cadmium particles equilibrate during heat treatment below the cadmium melting point, becoming elongated to increase the surface area and decrease the separation of the {111}Al//{0001}Cd facets.

The equilibrium cadmium particle shape and, therefore, the anisotropy of solid aluminium-solid cadmium and solid aluminium -liquid cadmium surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 420 °C. The anisotropy of solid aluminium-solid cadmium surface energy is constant between room temperature and the cadmium melting point, with the {100}Al//{20¯23}Cd surface energy on average 40% greater than the {111}Al//{0001}Cd surface energy, and 10% greater than the {111}Al//{40¯43Cd surface energy. When the cadmium particles melt at temperatures above 321 °C, the {100}Al//{20¯23}Cd facets disappear and the {111}Al//{40¯43}Cd and {111}A1//{0001}Cd surface energies become equal. The {111}Al facets do not disappear when the cadmium particles melt, and the anisotropy of solid aluminium-liquid cadmium surface energy decreases gradually with increasing temperature above the cadmium melting point.

The kinetics of cadmium solidification have been examined by heating and cooling experiments in a differential scanning calorimeter over a range of heating and cooling rates. Cadmium particle solidification is nucleated catalytically by the surrounding aluminium matrix on the {111}Al faceted surfaces, with an undercooling of 56 K and a contact angle of 42 °. The nucleation kinetics of cadmium particle solidification are in good agreement with the hemispherical cap model of heterogeneous nucleation.


Cadmium Contact Angle Surface Energy Differential Scanning Calorimeter Heterogeneous Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Christian, in “The Theory of Transformations in Metals and Alloys” (Pergamon, Oxford, 1975)Google Scholar
  2. 2.
    B. Cantor, to be publishedGoogle Scholar
  3. 3.
    K. I. Moore, D. L. Zhang and B. Cantor, Acta Metall Mater. 38 (1990) 1327.CrossRefGoogle Scholar
  4. 4.
    B. Vonnegut, J. Colloid Sci. 3 (1948) 563CrossRefGoogle Scholar
  5. 5.
    D. Turnbull, J. Chem. Phys. 18 (1950) 768CrossRefGoogle Scholar
  6. 6.
    J. H. Perepezko, D. H. Rasmussen, I. E. Anderson and C. R. Loper, ”Solidification and Casting of Metals” (Metals Society, London, 1979) p. 169Google Scholar
  7. 7.
    J. H. Perepezko, in “Rapid Solidification Processing: Principle and Technology”, edited by R. Mehrabian, B. H. Kear and M. Cohen (Claitors, Boston, 1980) p. 56Google Scholar
  8. 8.
    Y. Miyayazawa and G. Pound, J. Cryst. Growth 23 (1974) 45CrossRefGoogle Scholar
  9. 9.
    J. H. Perepezko and J. S. Paik, J. Non-Cryst. Solids 61/62 (1984) 113CrossRefGoogle Scholar
  10. 10.
    M. G. Chu, Y. Shiohara and M. C. Flemings, Met. Trans. 15A (1984) 1303CrossRefGoogle Scholar
  11. 11.
    K. P. Cooper, I. E. Anderson and J. H. Perepezko, in “Rapidly Quenched Metals IV”, edited by K. Suzuki and T. Masumato (Japanese Institute of Metals, Tokyo, 1982) p. 107Google Scholar
  12. 12.
    B. A. Mueller, J. J. Richmond, J. H. Perepezko, in “Rapidly Quenched Metals V”, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 47CrossRefGoogle Scholar
  13. 13.
    J. H. Perepezko, B. A. Mueller, J. J. Richmond and K. P. Cooper, in “Rapidly Quenched Metals V”, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 43CrossRefGoogle Scholar
  14. 14.
    D. G. MacIasaac, Y. Shiohara, M. G. Chu and M. C. Flemings, in “Grain Refinement in Casting and Welds” (AIME, New York, 1983) p. 87Google Scholar
  15. 15.
    J. H. Perepezko and J. S. Smith, J. Non-Cryst. Solids 44 (1981) 65CrossRefGoogle Scholar
  16. 16.
    D. Turnbull and R. E. Cech, J. Appl. Phys. 21 (1950) 804CrossRefGoogle Scholar
  17. 17.
    D. Turnbull Trans. Met. Soc. AIME 188 (1950) 1144Google Scholar
  18. 18.
    V. Scripov in “Crystal Growth and Materials”, edited by E. Kaldis and H. Scheel (North-Holland, Amsterdam, 1977) p. 327Google Scholar
  19. 19.
    M. J. Stowell, Phil. Mag. 22 (1970) 1CrossRefGoogle Scholar
  20. 20.
    F. J. Bradshaw, M. E. Gasper and S. Pearson, J. Inst. Met. 87 (1958–59) 15Google Scholar
  21. 21.
    B. E. Sundquist and L. F. Mondolfo Trans. Met. Soc. AIME 221 (1961) 157Google Scholar
  22. 22.
    J. H. Hollomon and D. Turnbull, ibid. 191 (1951) 803Google Scholar
  23. 23.
    R. E. Cech and D. Turnbull, ibid. 206 (1956) 124Google Scholar
  24. 24.
    L. L. Lacy, M. B. Robinson and J. J. Rathz, J. Cryst. Growth 51 (1981) 47CrossRefGoogle Scholar
  25. 25.
    A. J. Drehman and A. L. Greer, Acta Metall. 32 (1984) 323CrossRefGoogle Scholar
  26. 26.
    A. J. Drehman and D. Turnbull, Scripta Metall. 15 (1981) 543CrossRefGoogle Scholar
  27. 27.
    C. S. Kiminami and P. K. Sahm, Acta Metall. 34 (1986) 2644CrossRefGoogle Scholar
  28. 28.
    S. Y. Shiohara and P. G. Ward, Can. Met. Quart 3 (1964) 117CrossRefGoogle Scholar
  29. 29.
    J. Fehling and E. Scheil, Z. Metallkde 53 (1962) 593Google Scholar
  30. 30.
    J. Walker, in “Physical Chemistry of Process Metallurgy”, edited by G. R. St. Pierre (AIME, New York, 1961) p. 845Google Scholar
  31. 31.
    T. Z. Kattamis and M. C. Flemings, Trans. Met. Soc. AIME 236 (1966) 1523Google Scholar
  32. 32.
    T. Z. Kattamis and M. C. Flemings, Met. Trans. 1 (1970) 1449CrossRefGoogle Scholar
  33. 33.
    T. Z. Kattamis, J. Mater. Sci. 5 (1970) 531CrossRefGoogle Scholar
  34. 34.
    S. N. Ojha, P. Ramachandrarao and T. R. Anantharaman, Trans. Indian Inst. Met. 36 (1983) 51Google Scholar
  35. 35.
    S. N. Ojha, T. R. Anantharaman and P. Ramachandrarao, J. Mater. Sei. 17 (1982) 264CrossRefGoogle Scholar
  36. 36.
    C. C. Wang and C. S. Smith, Trans Met. Soc. AIME 188 (1950) 136Google Scholar
  37. 37.
    R. T. Southin and G. A. Chadwick, Acta Metall. 26 (1978) 223CrossRefGoogle Scholar
  38. 38.
    P. G. Boswell and G. A. Chadwick, ibid. 28 (1980) 209CrossRefGoogle Scholar
  39. 39.
    P. G. Boswell, G. A. Chadwick, R. Elliot and F. R. Sale, in “Solidification and Casting of Metals” (Metals Society, London, 1979) p. 611Google Scholar
  40. 40.
    A. G. Gillen and B. Cantor, Acta Metall. 33 (1985) 1813CrossRefGoogle Scholar
  41. 41.
    G. Wulff, Z. Kristallog. 53 (1901) 440Google Scholar
  42. 42.
    J. W. Martin and R. D. Doherty, in “Stability of Microstructure in Metallic Systems” (Cambridge University Press, Cambridge, 1976)Google Scholar
  43. 43.
    T. B. Massalski, J. L. Murray, L. H. Mennett and H. Bakers, in “Binary Alloy Phase Diagrams” (American Society for Metals, Ohio, 1986)Google Scholar
  44. 44.
    B. Derby, Scripta Metall. 8 (1984) 169CrossRefGoogle Scholar
  45. 45.
    B. Derby and J. J. Favier, Acta Metall. 31 (1983) 1123CrossRefGoogle Scholar
  46. 46.
    P. G. Shewmon, in “Diffusion in Solids” (McGraw-Hill Book Company, Wiley, 1963) 1543Google Scholar
  47. 47.
    K. I. Moore, K. Chattopadhyay and B. Cantor, Proc. Roy. Soc. A414 (1987) 499CrossRefGoogle Scholar
  48. 48.
    B. E. Sundquist, Acta Metall. 12 (1964) 67CrossRefGoogle Scholar
  49. 49.
    W. T. Kim, D. L. Zhang and B. Cantor, Met. Trans., in pressGoogle Scholar
  50. 50.
    D. Turnbull, J. Appl. Phys. 21 (1950) 1022CrossRefGoogle Scholar
  51. 51.
    B. Cantor and R. D. Doherty, Acta Metall. 27 (1979) 33CrossRefGoogle Scholar
  52. 52.
    L. F. Mondolfo, N. L. Parist and G. J. Kardys, Mater. Sci. Eng. 68 (1984–1985) 249CrossRefGoogle Scholar
  53. 53.
    E. A. Brandes and C. J. Smithells, in “Metals Reference Handbook”, 6th edn (Butterworths, London, 1983)Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • D. L. Zhang
    • 1
  • K. Chattopadhyay
    • 2
  • B. Cantor
    • 1
  1. 1.Centre for Advanced Materials and Composites, Department of MaterialsOxford UniversityOxfordUK
  2. 2.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations