Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1517–1530 | Cite as

Composition-microstructure-property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 400 °C

  • E. Bouillon
  • D. Mocaer
  • J. F. Villeneuve
  • R. Pailler
  • R. Naslain
  • M. Monthioux
  • A. Oberlin
  • C. Guimon
  • G. Pfister
Papers

Abstract

A 15 μm monofilament was extruded from a Yajima's type molten polycarbosilane, stabilized by addition of oxygen and heat-treated at 800 to 1400 °C under an argon atmosphere. Two important phenomena occur during pyrolysis. At 500 to 750 °C, an organic-inorganic state transition takes place with a first weight loss. It yields an amorphous material stable up to about 1100 °C. At this temperature, its composition is close to Si4C5O2. It can be described as a continuum of SiC4 and/or SiC4−xOx tetrahedral species (and possibly contains free carbon), with a homogeneity domain size less than 1 nm. The amorphous filament exhibits a high strength and semi-conducting properties. Above 1200 °C, a thermal decomposition of the amorphous material takes place with an evolution of gaseous species thought to be mainly SiO and CO, an important cross-section shrinkage and the formation of 7 to 20 nm SiC crystals which are surrounded with a poorly organized turbostratic carbon. The amorphous-crystalline state transition results in a drop in the tensile failure strength and an increase, by four orders of magnitude, in the electrical conductivity which becomes temperature independent. The former effect is due to the crystallization of the filament and the latter to a percolation phenomenon related to the intergranular carbon. The low stiffness is also due to the presence of carbon. It is anticipated that this transition is mainly related to the decomposition of the silicon oxycarbide species. Finally, a 40 to 50 nm layer of turbostratic carbon is formed at the filament surface at 1200 to 1400 °C whose origin remains uncertain. It is thought to be mainly responsible for the formation of the carbon interphase in the high-temperature processing of ceramic matrix composites.

Keywords

Pyrolysis Amorphous Material Failure Strength Ceramic Matrix Composite Filament Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Naslain, “Introduction to Composite Materials” Vol. 2, “Metallic and Ceramic Matrix Composites” (in French) (CNRS/IMC, Bordeaux, 1985).Google Scholar
  2. 2.
    S. Yajima, in “Handbook of Composites” Vol. 1, edited by W. Watt and B. V. Perov (Eisevier, Amsterdam, 1985).Google Scholar
  3. 3.
    S. Yajima, J. Hayashi and M. Omori, Chem. Lett. (1975) 931.Google Scholar
  4. 4.
    S. Yajima, K. Okamura and M. Omori, ibid. (1975) 1209.Google Scholar
  5. 5.
    S. Yajima, Y. Hasegawa, J. Hayashi and M. Iimura, J. Mater. Sci. 13 (1978) 2529.Google Scholar
  6. 6.
    Y. Hasegawa, M. Iimura and S. Yajima, ibid. 15 (1980) 720.CrossRefGoogle Scholar
  7. 7.
    Y. Hasegawa and K. Okamura, ibid. 18 (1983) 3633.CrossRefGoogle Scholar
  8. 8.
    Idem, ibid. 21 (1986) 321.CrossRefGoogle Scholar
  9. 9.
    K. Okamura, Composites 18 (1987) 107.CrossRefGoogle Scholar
  10. 10.
    K. Okamura, US Pat. 4650773 17 (1987).Google Scholar
  11. 11.
    K. Okamura, M. Sato, Y. Hasegawa and T. Amano, Chem. Lett. (1984) 2059.Google Scholar
  12. 12.
    L. C. Sawyer, M. Jamiesson, O. Brikowski, M. I. Haider and R. T. Chen, J. Amer. Ceram. Soc. 70 (1987) 798.CrossRefGoogle Scholar
  13. 13.
    Y. Maniette and A. Oberlin, J. Mater. Sci. 24 (1989) 3361.CrossRefGoogle Scholar
  14. 14.
    J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.CrossRefGoogle Scholar
  15. 15.
    L. C. Sawyer, R. T. Chen, F. Haimback, P. J. Harget, E. R. Prack and M. Jaffe, Ceram. Engng Sci. Proc. 7 (1986) 914.CrossRefGoogle Scholar
  16. 16.
    C. Laffon, A. M. Flank, R. Hagege, P. Olry, J. Cotteret, M. Laridjani, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, J. Mater. Sci. 24 (1989) 1503.CrossRefGoogle Scholar
  17. 17.
    T. J. Clark, R. M. Arons, J. B. Stammatoff and J. Rabe, Ceram. Engng Sci. Proc. 7–8 (1985) 576.CrossRefGoogle Scholar
  18. 18.
    A. S. Fareed, P. Fong, M. J. Koczak and F. M. Ko, Amer. Ceram. Soc. Bull. 66 (1987) 353.Google Scholar
  19. 19.
    T. Mah, N. L. Heicht, D. E. McCallum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, J. Mater. Sci. 19 (1984) 1191.CrossRefGoogle Scholar
  20. 20.
    L. C. Sawyer, R. Arons, F. Haimback, M. Jaffe and K. D. Rappaport, Ceram. Engng Sci. Proc. 7–8 (1985) 567.CrossRefGoogle Scholar
  21. 21.
    G. Simon and A. R. Bunsell, J. Mater. Sci. 19 (1984) 3649.CrossRefGoogle Scholar
  22. 22.
    T. J. Clark, M. Jaffe, J. Rabe and N. R. Langley, Ceram. Engng Sci. Proc. 7–8 (1986) 901.CrossRefGoogle Scholar
  23. 23.
    Y. Sasaki, Y. Nishima, M. Sato and K. Okamura, J. Mater. Sci. 22 (1987) 443.CrossRefGoogle Scholar
  24. 24.
    K. L. Luthra, J. Amer. Ceram. Soc. 69 (1986) C-231.CrossRefGoogle Scholar
  25. 25.
    S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rawcliffe, ibid. 71 (1988) C-132.Google Scholar
  26. 26.
    E. Bouillon, F. Langlais, R. Pailler, R. Naslain, J. C. Sarthou, A. Delpuech, C. Laffon, P. Lagarde, F. Cruege, P. V. Huong, M. Monthioux and A. Oberlin, J. Mater. Sci. in press.Google Scholar
  27. 27.
    E. Bouillon, R. Pailler, R. Naslain, E. Bacque, J. P. Pillot, M. Birot, J. Dunogues and P. V. Huong, ibid. Google Scholar
  28. 28.
    A. Oberlin, Carbon 17 (1979) 7.CrossRefGoogle Scholar
  29. 29.
    M. Monthioux, A. Oberlin and E. Bouillon, Compos. Sci. Technol. 37 (1990) 21.CrossRefGoogle Scholar
  30. 30.
    A. R. Bunsell, J. W. S. Hearle and R. D. Huter, J. Phys. E. Sci. Instrum. 4 (1971) 868.CrossRefGoogle Scholar
  31. 31.
    J. F. Villeneuve, Internal report (1988) LCTS (UM47) 33600 Pessac, France.Google Scholar
  32. 32.
    J. J. Poupeau, D. Abbe and J. Jamet, ONERA Report (1982).Google Scholar
  33. 33.
    L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.CrossRefGoogle Scholar
  34. 34.
    J. A. Taylor, Appl. Surf. Sci. 7 (1981) 168.CrossRefGoogle Scholar
  35. 35.
    Y. Mizokawa, K. M. Geib and C. W. Wilmsen, J. Vac. Technol. A. 4 (1986) 1696.CrossRefGoogle Scholar
  36. 36.
    M. N. Rahaman and L. C. De Jonghe, Amer. Ceram. Soc. Bull. 66 (1987) 782.Google Scholar
  37. 37.
    T. Goto, F. Itoh, K. Suzuki and T. Hurui, J. Mater. Sci. Lett. 2 (1983) 805.CrossRefGoogle Scholar
  38. 38.
    W. Y. Lee, J. Appl. Phys. 51 (1980) 3365.CrossRefGoogle Scholar
  39. 39.
    R. Pampuch, W. Ptak, S. Jona and J. Stoch, in “Energy and Ceramics” edited by P. Vinccuzini (Elsevier, Amsterdam, 1980) pp. 435–48.Google Scholar
  40. 40.
    S. Yajima, K. Okamura, T. Matsuzawa and T. Schishido, Nature 279 (1979) 706.CrossRefGoogle Scholar
  41. 41.
    A. Oberlin, Carbon 22 (1984) 521.CrossRefGoogle Scholar
  42. 42.
    A. Oberlin, S. Bonnamy, X. Bourrat, M. Monthioux and J. N. Rouzaud, ACS. Symp. Ser. 303 (1986) 85.CrossRefGoogle Scholar
  43. 43.
    P. Lecoustumer, M. Monthioux and A. Oberlin, in “Composite Materials for High Temperature Applications” (in French), edited by P. Naslain, J. Lamalle and J. L. Zulian (Amac-Codemac, Bordeaux, 1990).Google Scholar
  44. 44.
    Thermodata, Saint-Martin d'Héres (1988).Google Scholar
  45. 45.
    E. Menessier, University thesis 216, Bordeaux (1988).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • E. Bouillon
    • 1
  • D. Mocaer
    • 1
  • J. F. Villeneuve
    • 1
  • R. Pailler
    • 1
  • R. Naslain
    • 1
  • M. Monthioux
    • 2
  • A. Oberlin
    • 2
  • C. Guimon
    • 3
  • G. Pfister
    • 3
  1. 1.Laboratoire des Composites Thermostructuraux, (UM 47-CNRS-SEP-UB1), EuroparcPessacFrance
  2. 2.Laboratoire Marcel Mathieu (UA 1205 CNRS)Université de PauPauFrance
  3. 3.Laboratoire de Physico-Chimie Moléculaire (UA 474-CNRS)Université de PauPauFrance

Personalised recommendations