Journal of Materials Science

, Volume 26, Issue 6, pp 1512–1516 | Cite as

Hydrotalcite-like compounds obtained by anion exchange reactions

  • M. A. Ulibarri
  • M. J. Hernandez
  • J. Cornejo


The synthesis of nickel aluminium hydroxypicrate, [Ni3Al(OH)8] (C6O7N3H2)·nH2O, and lithium aluminium hydroxypicrate, [Al2Li(OH)6] (C6O7N3H2)·nH2O by anion exchange is described. Picric acid and the corresponding hydroxycarbonates were used as starting materials. The new compounds were characterized by chemical analyses, electron microscopy, infrared spectroscopy and X-ray diffraction. The results obtained indicate that both are hydrotalcite-like compounds where the picrate anion lies between the basic layers. The thermal decomposition of the compounds was studied by differential thermal and thermogravimetric analysis.


Polymer Electron Microscopy Nickel Lithium Thermal Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Allmann, Acta Crystallogr. B24 (1968) 972.CrossRefGoogle Scholar
  2. 2.
    H. F. W. Taylor, Mineral. Mag. 39 (1973) 377.CrossRefGoogle Scholar
  3. 3.
    S. Miyata, Clays & Clay Miner. 23 (1975) 369.CrossRefGoogle Scholar
  4. 4.
    C. J. Serna, J. L. Rendon and J. E. Iglesias, ibid. 30 (1982) 180.CrossRefGoogle Scholar
  5. 5.
    M. J. Hernandez, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Phys. Chem. Miner. 12 (1985) 34.Google Scholar
  6. 6.
    I. Sissoko, E. T. Iyagba, R. Sahai and P. Biloen, J. Solid State Chem. 60 (1985) 283.CrossRefGoogle Scholar
  7. 7.
    D. L. Bish, Bull. Mineral. 103 (1980) 170.Google Scholar
  8. 8.
    S. Miyata, Clays & Clay Miner. 31 (1983) 305.CrossRefGoogle Scholar
  9. 9.
    M. A. Ulibarri, M. J. Hernandez, J. Cornejo and C. J. Serna, Mater. Chem. Phys. 14 (1986) 569.CrossRefGoogle Scholar
  10. 10.
    T. Kown, G. A. Tsigdinos and T. J. Pinnavaia, J. Amer. Chem. Soc. 110 (1988) 3653.CrossRefGoogle Scholar
  11. 11.
    E. Suzuki, S. Idemura and Y. Ono, Clays & Clay Miner. 37 (1989) 173.CrossRefGoogle Scholar
  12. 12.
    M. J. Hernandez, M. A. Ulibarri, J. L. Rendon and C. J. Serna, Thermochim. Acta 81 (1984) 311.CrossRefGoogle Scholar
  13. 13.
    M. A. Ulibarri, J. Cornejo and M. J. Hernandez, J. Mater. Sci. 22 (1987) 1168.CrossRefGoogle Scholar
  14. 14.
    A. Schutz and P. Biloen, J. Solid State Chem. 68 (1987) 360.CrossRefGoogle Scholar
  15. 15.
    E. Pretsch, T. Clerc, J. Seibl and W. Simon, “Tablas para la elucidación estructural de compuestos orgánicos por métodos espectroscópicos” (Alhambra, Madrid, 1980).Google Scholar
  16. 16.
    M. J. Hernandez, minor thesis, Cordoba, Spain, 1982.Google Scholar
  17. 17.
    M. A. Ulibarri, J. M. Luque and J. Cornejo, Mater. Chem. Phys. 25 (1990) 81.CrossRefGoogle Scholar
  18. 18.
    G. Mascolo, Thermochim. Acta 102 (1986) 67.CrossRefGoogle Scholar
  19. 19.
    K. R. Poeppelmeier and S.-J. Hwu, Inorg. Chem. 26 (1987) 3297.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • M. A. Ulibarri
    • 1
  • M. J. Hernandez
    • 1
  • J. Cornejo
    • 2
  1. 1.Departamento de Química Inorgánica e Ingeniería Química, Facultad de CienciasUniversidad de CórdobaCórdobaSpain
  2. 2.Instituto de Recursos Naturales y AgrobiologiaCSICSevillaSpain

Personalised recommendations