Advertisement

Journal of Materials Science

, Volume 26, Issue 5, pp 1395–1400 | Cite as

Surface and grain-boundary energies of cubic zirconia

  • D. Sotiropoulou
  • P. Nikolopoulos
Papers

Abstract

Using the multiphase equilibration technique for the measurement of contact angles, the surface and grain-boundary energies of polycrystalline cubic ZrO2 in the temperature range of 1173 to 1523 K were determined. The temperature coefficients of the linear temperature function obtained, are expressed as
$$\frac{{{\text{d}}\gamma }}{{{\text{d}}T}}({\text{ZrO}}_{\text{2}} ){\text{ }} = {\text{ }} - 0.431{\text{ }} \times {\text{ }}10^{ - 3} {\text{ }} \pm {\text{ }}0.004{\text{ }} \times {\text{ }}10^{ - 3} {\text{ Jm}}^{ - {\text{2}}} {\text{ K}}^{ - {\text{1}}} $$
and
$$\frac{{{\text{d}}\gamma }}{{{\text{d}}T}}({\text{ZrO}}_{\text{2}} - {\text{ZrO}}_{\text{2}} ){\text{ }} = {\text{ }} - 0.392{\text{ }} \times {\text{ }}10^{ - 3} {\text{ }} \pm {\text{ }}0.126{\text{ }} \times {\text{ }}10^{ - 3} {\text{ Jm}}^{ - {\text{2}}} {\text{ K}}^{ - {\text{1}}} $$
respectively. The surface fracture energy obtained with a Vickers microhardness indenter at room temperature is found to be γF=3.1 J m−2.

Keywords

Polymer Zirconia Contact Angle Surface Fracture Fracture Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. C. Allen, J. Less-Common Metals 29 (1972) 63.CrossRefGoogle Scholar
  2. 2.
    E. N. Hodkin and M. G. Nicholas, J. Nucl. Mater. 47 (1973) 23.CrossRefGoogle Scholar
  3. 3.
    P. Nikolopoulos, S. Nazare and F. Thümmler, ibid. 71 (1977) 89.CrossRefGoogle Scholar
  4. 4.
    B. K. Hodgson and H. Mykura, J. Mater. Sci. 8 (1973) 565.CrossRefGoogle Scholar
  5. 5.
    D. Broek, “Elementary Engineering Fracture Mechanics”, (Noordhoff, Leyden, 1974) p. 15.Google Scholar
  6. 6.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  7. 7.
    Hj. Matzke, in “Indentation Fracture and Mechanical Properties of Ceramic Fuels and of Waste Ceramics and Glasses”, edited by Hj. Matzke (Harwood, London, 1987) p. 1007.Google Scholar
  8. 8.
    F. A. Halden and W. D. Kingery, J. Phys. Chem. 59 (1955) 557.CrossRefGoogle Scholar
  9. 9.
    S. Amelinckx, N. F. Binnendijk and E. Dekeyser, Physica 19 (1953) 1173.CrossRefGoogle Scholar
  10. 10.
    P. Nikolopoulos, G. Ondracek and D. Sotiropoulou, Ceram. Int. 15 (1989) 201.CrossRefGoogle Scholar
  11. 11.
    B. C. Allen, in “Liquid Metals”, edited by S. Z. Beer (Dekker, New York, 1972) p. 161.Google Scholar
  12. 12.
    R. C. Garvie, in “Refractory Materials”, Vol. 5-II, edited by A. M. Alper (Academic, New York, 1970) p. 157.Google Scholar
  13. 13.
    R. P. Ingel, R. W. Rice and D. Lewis, J. Amer. Ceram. Soc. 65 (1982) C-108.Google Scholar
  14. 14.
    M. V. Swain, R. C. Garvie and R. H. J. Hannink, ibid. 66 (1983) 358.CrossRefGoogle Scholar
  15. 15.
    D. B. Marshall and M. V. Swain, ibid. 71 (1988) 399.CrossRefGoogle Scholar
  16. 16.
    T. Inoue and Hj. Matzke, ibid. 64 (1981) 355.CrossRefGoogle Scholar
  17. 17.
    W. D. Kingery, ibid. 37 (1954) 42.CrossRefGoogle Scholar
  18. 18.
    J. M. Lihrmann and J. S. Haggerty, ibid. 68 (1985) 81.CrossRefGoogle Scholar
  19. 19.
    H. F. Holmes, E. L. Fuller and R. B. Gammage, J. Phys. Chem. 76 (1972) 1497.CrossRefGoogle Scholar
  20. 20.
    Hj. Matzke, J. Mater. Sci. 15 (1980) 739.CrossRefGoogle Scholar
  21. 21.
    A. G. Evans and R. W. Davidge, J. Nucl. Mater. 33 (1969) 249.CrossRefGoogle Scholar
  22. 22.
    R. Chaim, A. H. Heuer and D. G. Brandon, J. Amer. Ceram. Soc. 69 (1986) 243.CrossRefGoogle Scholar
  23. 23.
    P. Nikolopoulos, J. Mater. Sci. 20 (1985) 3993.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • D. Sotiropoulou
    • 1
  • P. Nikolopoulos
    • 1
  1. 1.Institute of Physical Metallurgy, Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations