Advertisement

Journal of Materials Science

, Volume 26, Issue 5, pp 1363–1367 | Cite as

Synthesis and properties of platinum-dispersed carbon by pressure pyrolysis of organoplatinum copolymer

  • Toshinobu Yogo
  • Hideyuki Suzuki
  • Hiroyasu Iwahara
  • Shigeharu Naka
  • Shin-Ichi Hirano
Papers

Abstract

Platinum-dispersed carbon was synthesized by pressure pyrolysis of divinylbenzenebis (2-allylphenyl)platinum (APPt) and phenylacetylene-APPt at 550 °C and 125 MPa. The crystallinity of platinum dispersed in the carbon matrix synthesized from phenylacetylene(PA)-APPt was higher than that from divinylbenzene(DVB)-APPt. Platinum particles less than 60 nm were dispersed in the carbon matrix synthesized from DVB-APPt at 550 °C and 125 MPa. The carbon matrix formed from PA-APPt contained platinum particles of about 120 nm. The specific area of platinum-dispersed carbon synthesized at 550 °C and 125 MPa increased on subsequent heat treatments in argon, and reached 90 m2 g−1 after heat treatment at 800 °C for 1 h. The activity of platinum-dispersed carbon for the hydrogenation of cyclohexene increased with increasing specific area. Platinum-dispersed carbon formed from DVBAPPt was more active for hydrogenation reaction than that from PA-APPt. The highly active platinum-dispersed carbon could be synthesized from DVB-APPt at 520 °C. The surface area reached 154 m2 g−1 after heat treatment at 800 °C.

Keywords

Hydrogenation Polymer Heat Treatment Platinum Argon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Marsh, F. Dachille, J. Melvin and P. L. Walker Jr, Carbon 9 (1971) 159.CrossRefGoogle Scholar
  2. 2.
    S. Hirano, F. Dachille and P. L. Walker Jr, High Temp. High Press. 5 (1973) 207.Google Scholar
  3. 3.
    S. Hirano, T. Yogo, H. Suzuki and S. Naka, J. Mater. Sci. 18 (1983) 2811.CrossRefGoogle Scholar
  4. 4.
    S. Hirano, T. Yogo, N. Nogami and S. Naka, ibid. 21 (1986) 225.CrossRefGoogle Scholar
  5. 5.
    T. Yogo, E. Tamura, S. Naka and S. Hirano, ibid. 21 (1986) 941.CrossRefGoogle Scholar
  6. 6.
    S. Hirano, T. Yogo, K. Kikuta and S. Naka, ibid. 21 (1986) 1951.CrossRefGoogle Scholar
  7. 7.
    T. Yogo, H. Yokoyama, S. Naka and S. Hirano, ibid. 21 (1986) 2571.CrossRefGoogle Scholar
  8. 8.
    T. Yogo, S. Naka and S. Hirano, ibid. 22 (1987) 985.CrossRefGoogle Scholar
  9. 9.
    Idem, ibid. 24 (1989) 2071.CrossRefGoogle Scholar
  10. 10.
    Idem, ibid. 24 (1989) 2115.CrossRefGoogle Scholar
  11. 11.
    T. Yogo, H. Tanaka, S. Naka and S. Hirano, ibid. 25 (1990) 719.Google Scholar
  12. 12.
    M. Aresta and R. S. Nyholm, Chem. Commun. (1971) 1459.Google Scholar
  13. 13.
    S. Hirano, M. Ozawa and S. Naka, J. Mater. Sci. 16 (1981) 1989.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Toshinobu Yogo
    • 1
  • Hideyuki Suzuki
    • 1
  • Hiroyasu Iwahara
    • 1
  • Shigeharu Naka
    • 1
  • Shin-Ichi Hirano
    • 2
  1. 1.Synthetic Crystal Research LaboratoryNagoya UniversityNagoyaJapan
  2. 2.Department of Applied Chemistry, Faculty of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations