Advertisement

Journal of Materials Science

, Volume 26, Issue 5, pp 1351–1356 | Cite as

Deformation and fracture behaviour of wheat starch plasticized with glucose and water

  • A. -L. Ollett
  • R. Parker
  • A. C. Smith
Papers

Abstract

The mechanical properties of wheat starch and the effects of plasticizers upon them are studied in flexure at 293 K. For compositions low in water and glucose the material is glassy, with a flexural modulus between 0.7 and 5.0 GPa. The addition of water and glucose to wheat starch plasticizes the material through its glass transition into a rubbery state. The flexural moduli of the rubbery samples are in the range 50 to 200 MPa, which is indicative of a partially crystalline polymer. For starch-water mixtures the glass transition occur in the water content range 18 to 20%. The addition of glucose progressively shifts the glass transition to lower water contents. At strains below 0.04 brittle failure is only observed in the glassy samples. The surface morphology of the fractured samples shows features typical of pure synthetic glassy polymers.

Keywords

Glucose Polymer Mechanical Property Starch Brittle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Harper, “Extrusion of Foods” (CRC, Boca Raton, 1981).Google Scholar
  2. 2.
    M. C. Bourne, “Food Texture and Viscosity: Concept and Measurement” (Academic, New York, 1982).Google Scholar
  3. 3.
    J. Andriev and A. -A. Stamatopoulos, Lebensm.- Wiss. u. -Technol. 19 (1986) 448.Google Scholar
  4. 4.
    R. J. Hutchinson, S. A. Mantle and A. C. Smith, J. Mater. Sci. 24 (1989) 3249.CrossRefGoogle Scholar
  5. 5.
    K. J. Zeleznak and R. C. Hoseney, Cereal Chem. 63 (1987) 121.Google Scholar
  6. 6.
    P. Colonna and C. Mercier, Carb. Polym. 5 (1983) 189.Google Scholar
  7. 7.
    A. Senouci and A. C. Smith, Rheologica Acta 27 (1988) 546.CrossRefGoogle Scholar
  8. 8.
    BS2782: Part 3: method 335A (1978).Google Scholar
  9. 9.
    BS2782: Part 10: method 1005 (1977).Google Scholar
  10. 10.
    L. Greenspan, J. Res. Nat. Bureau Stand. A: Phys. Chem. 81a (1977) 89.CrossRefGoogle Scholar
  11. 11.
    R. P. Brown, “Handbook of Plastics Test Methods” 2nd Edn (Godwin, London, 1981) p. 118.Google Scholar
  12. 12.
    R. D. Heap and R. H. Norman, “Flexural Testing of Plastics” (Plastics Institute, London, 1969).Google Scholar
  13. 13.
    P. Colonna, J. L. Doublier, J. P. Melcion, F. de Monredon and C. Mercier, Cereal Chem. 61 (1984) 538.Google Scholar
  14. 14.
    M. C. Shen and A. Eisenberg, Prog. Solid State. Chem. 3 (1966) 407.CrossRefGoogle Scholar
  15. 15.
    P. D. Orford, R. Parker, S. G. Ring and A. C. Smith, Int. J. Biol. Macromol. 11 (1989) 91.CrossRefGoogle Scholar
  16. 16.
    C. Mestres, P. Colonna and A. Buleon, J. Cereal Sci. 7 (1988) 123.CrossRefGoogle Scholar
  17. 17.
    E. H. Andrews, “Fracture in Polymers” (Oliver & Boyd, Edinburgh, 1968).Google Scholar
  18. 18.
    R. P. Kusy and D. T. Turner, Polymer 18 (1977) 391.CrossRefGoogle Scholar
  19. 19.
    R. Van Noort and B. Ellis, J. Mater. Sci. Lett. 3 (1984) 1031.CrossRefGoogle Scholar
  20. 20.
    T. -Y. Pan, R. E. Robertson and F. E. Filisko, J. Mater. Sci. 24 (1989) 3635.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • A. -L. Ollett
    • 1
  • R. Parker
    • 1
  • A. C. Smith
    • 1
  1. 1.Norwich LaboratoryAFRC Institute of Food ResearchNorwichUK

Personalised recommendations