Advertisement

Journal of Materials Science

, Volume 26, Issue 5, pp 1333–1345 | Cite as

Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material

  • E. Bouillon
  • F. Langlais
  • R. Pailler
  • R. Naslain
  • F. Cruege
  • P. V. Huong
  • J. C. Sarthou
  • A. Delpuech
  • C. Laffon
  • P. Lagarde
  • M. Monthioux
  • A. Oberlin
Papers

Abstract

The pyrolysis of a PCS precursor has been studied up to 1600 °C through the analysis of the gas phase and the characterization of the solid residue by thermogravimetric analysis, extended X-ray absorption fine structure, electron spectrocopy for chemical analysis, transmission electron microscopy, X-ray diffraction, Raman and Auger electron spectroscopy microanalyses, as well as electrical conductivity measurements. The pyrolysis mechanism involves three main steps: (1) an organometallic mineral transition (550 < Tp < 800 °C) leading to an amorphous hydrogenated solid built on tetrahedral SiC, Si02 and silicon oxycarbide entities, (2) a nucleation of SiC (1000 < Tp < 1200 °C) resulting in SiC nuclei (less than 3 nm in size) surrounded with aromatic carbon layers, and (3) a SiC grain-size coarsening (Tp > 1400 °C) consuming the residual amorphous phases and giving rise simultaneously to a probable evolution of SiO and CO. The formation of free carbon results in a sharp insulator-quasimetal transition with a percolation effect.

Keywords

Pyrolysis Auger Auger Electron Spectroscopy Electron Spectroscopy Free Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Rice, Ceram. Bull. 62 (1983) 889.Google Scholar
  2. 2.
    S. Yajima, in “Handbook of Composites” Vol. 1, “Strong Fibers” edited by W. Watt and B. V. Perov (Elsevier Science, New York, 1985) p. 201.Google Scholar
  3. 3.
    Y. Hasegawa, M. Iimuraand S. Yajima, J. Mater. Sci. 15 (1980) 720.CrossRefGoogle Scholar
  4. 4.
    T. Mah, N. L. Hecht, D. E. McCallum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, ibid. 19 (1984) 1191.CrossRefGoogle Scholar
  5. 5.
    G. Simon and A. R. Bunsell, ibid. 19 (1984) 3649.CrossRefGoogle Scholar
  6. 6.
    Idem., ibid. 19 (1984) 3658.CrossRefGoogle Scholar
  7. 7.
    T. J. Clark, R. Arons, J. Rabe and J. B. Stamatoff, Ceram. Engng Sci. Proc. 6 (1985) 576.CrossRefGoogle Scholar
  8. 8.
    T. J. Clark, M. Jaffe, J. Rabe and N. R. Langley, ibid. 7 (1986) 901.CrossRefGoogle Scholar
  9. 9.
    L. C. Sawyer, R. T. Chin, F. Haimback, P. J. Harget, E. R. Prack and M. Jaffe, ibid. 7 (1986) 914.CrossRefGoogle Scholar
  10. 10.
    K. Okamura, Composites 18 (1987) 107.CrossRefGoogle Scholar
  11. 11.
    A. S. Fareed, P. Fang, J. Koczak and F. M. Ko, Ceram. Bull. 66 (1987) 353.Google Scholar
  12. 12.
    L. C. Sawyer, M. Jamieson, D. Brikowski, M. I. Haider and R. T. Chen, J. Amer. Ceram. Soc. 70 (1987) 798.CrossRefGoogle Scholar
  13. 13.
    C. Laffon, P. Lagarde, A. M. Flank, R. Hagege, P. Olry, J. Cotteret, S. Dixmier, M. Laridjani, A. P. Legrand and B. Homelle, J. Mater. Sci. 24 (1989) 1503.CrossRefGoogle Scholar
  14. 14.
    Y. Hasegawa and K. Okamura, ibid. 18 (1983) 3633.CrossRefGoogle Scholar
  15. 15.
    S. Yajima, Y. Hasegawa, J. Hayashi and M. Iimura, ibid. 13 (1978) 2569.Google Scholar
  16. 16.
    Y. Hasegawa and K. Okamura, ibid. 21 (1986) 321.CrossRefGoogle Scholar
  17. 17.
    J. C. Sarthou, University thesis 155, Bordeaux (1984).Google Scholar
  18. 18.
    J. J. Poupeau, D. Abbe and J. Jamet, ONERA Report (1982).Google Scholar
  19. 19.
    L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.CrossRefGoogle Scholar
  20. 20.
    Y. Misokawa, K. M. Geib and C. W. Winsem, J. Vac. Sci. Technol. A 4 (1986) 1696.CrossRefGoogle Scholar
  21. 21.
    J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.CrossRefGoogle Scholar
  22. 22.
    D. Bouchier and A. Bosseboeuf, Thin Solid Films 139 (1986) 95.CrossRefGoogle Scholar
  23. 23.
    P. Lespade, A. Marchand, M. Couzi and F. Cruege, Carbon 22 (1984) 375.CrossRefGoogle Scholar
  24. 24.
    F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53 (1970) 1126.CrossRefGoogle Scholar
  25. 25.
    B. S. Elman, M. S. Dresselhaus, G. Dresselhaus, E. W. Maby and H. Mazurek, Phys. Rev. B 24 (1981) 1027.CrossRefGoogle Scholar
  26. 26.
    T. C. Chieu, M. S. Dresselhaus and M. Endo, ibid. 26 (1982) 5867.CrossRefGoogle Scholar
  27. 27.
    M. Gorman and S. A. Solin, Solid State Commun. 15 (1974) 761.CrossRefGoogle Scholar
  28. 28.
    Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata and S. Tsuboi, ibid. 48 (1983) 1071.Google Scholar
  29. 29.
    A. Morimoto, T. Kataoka, M. Kumeda and T. Shimizu, Philos. Mag. B 50 (1984) 517.CrossRefGoogle Scholar
  30. 30.
    P. Martineau, M. Lahaye, R. Pailler, R. Naslain, M. Couzi and F. Cruege, J. Mater. Sci. 19 (1984) 2731.CrossRefGoogle Scholar
  31. 31.
    M. Monthioux, A. Oberlin and E. Bouillon, Compos. Sci. Technol. 37 (1990) 21.CrossRefGoogle Scholar
  32. 32.
    H. A. Pohl, in “Modern Aspects of the Vitrous State”, Vol. 2, edited by J. D. Mackenzie (London, 1972) p. 72.Google Scholar
  33. 33.
    M. Rodot, “Les Matériaux Semi Conducteurs” Vol. 2 (Dunod, Paris, 1965).Google Scholar
  34. 34.
    F. Carmona, P. Delhaes, F. Barreau, D. Ordiera, R. Canet and L. Lafeychine, J. Phys. 41 (1980) 531.Google Scholar
  35. 35.
    S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rawcliffe, J. Amer. Ceram. Soc. 71 (1988) C-132.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • E. Bouillon
    • 1
  • F. Langlais
    • 1
  • R. Pailler
    • 1
  • R. Naslain
    • 1
  • F. Cruege
    • 2
  • P. V. Huong
    • 2
  • J. C. Sarthou
    • 3
  • A. Delpuech
    • 3
  • C. Laffon
    • 4
  • P. Lagarde
    • 4
  • M. Monthioux
    • 5
  • A. Oberlin
    • 5
  1. 1.Laboratoire de Chimie du Solide du CNRSUniversité de Bordeaux 1TalenceFrance
  2. 2.Laboratoire de Spectroscopie Moléculaire et CristallineUniversité de Bordeaux 1TalenceFrance
  3. 3.Centre d'Etudes Scientifiques et Techniques d'AquitaineCEALe BarpFrance
  4. 4.LURE, Bt 209DUniversité de Paris-OrsayOrsayFrance
  5. 5.Laboratoire Marcel MathieuUniversité de PauPauFrance

Personalised recommendations