Advertisement

Journal of Materials Science

, Volume 26, Issue 5, pp 1316–1320 | Cite as

Pressureless sintering of Al2O3-SiC whisker composites

  • Young-Wook Kim
  • June-Gunn Lee
Papers

Abstract

High-density compacts, up to 88% theoretical density, of Al2O3-SiC whiskers were prepared by a pressure casting and impregnation technique. Starting with these green bodies, composites of Al2O3−20 vol% SiC whiskers were pressureless sintered to higher than 95% theoretical density. They were further densified by hot isostatic pressing up to 99% theoretical density, resulting in a rupture strength of 680 MPa and a fracture toughness of 4.70 Mpa m1/2.

Keywords

Polymer Al2O3 Fracture Toughness Theoretical Density Green Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Becher and G. C. Wei, Commun. Amer. Ceram. Soc. 63 (1984) C267.Google Scholar
  2. 2.
    G. C. Wei and P. F. Becher, Amer. Ceram. Soc. Bull. 64 (1985) 298.Google Scholar
  3. 3.
    S. C. Samanta and S. Musikant, Ceram. Engng Sci. Proc. 6 (1985) 663.CrossRefGoogle Scholar
  4. 4.
    P. D. Shalek, J. J. Petrovic, G. F. Hurley and F. D. Gac, Amer. Ceram. Soc. Bull. 65 (1986) 351.Google Scholar
  5. 5.
    K. P. Gadkaree and K. Chyung, ibid. 65 (1986) 370.Google Scholar
  6. 6.
    N. Claussen, K. L. Weisskopf and M. Ruhle, J. Amer. Ceram. Soc. 69 (1986) 288.CrossRefGoogle Scholar
  7. 7.
    T. N. Tiegs and P. F. Becher, Ceram. Engng Sci. Proc. 7 (1986) 1182.CrossRefGoogle Scholar
  8. 8.
    J. Homeny, W. L. Vaughn and M. K. Ferber, Amer. Ceram. Soc. Bull. 67 (1987) 333.Google Scholar
  9. 9.
    J. R. Porter, ibid. 66 (1987) 343.Google Scholar
  10. 10.
    T. N. Tiegs and P. F. Becher, J. Amer. Ceram. Soc. 70 (1987) C109.CrossRefGoogle Scholar
  11. 11.
    M. G. Jenkins, A. S. Kobayashi, K. W. White and R. C. Bradt, ibid. 70 (1987) 393.CrossRefGoogle Scholar
  12. 12.
    P. F. Becher and T. N. Tiegs, Adv. Ceram. Mater. 3 (1988) 148.CrossRefGoogle Scholar
  13. 13.
    T. N. Tiegs and P. F. Becher, Amer. Ceram. Soc. Bull. 66 (1987) 339.Google Scholar
  14. 14.
    M. D. Sacks, H. W. Lee and O. E. Rojas, J. Amer. Ceram. Soc. 71 (1988) 370.CrossRefGoogle Scholar
  15. 15.
    M. D. Sacks, H. W. Lee and O. E. Rojas, Ceram. Engng Sci. Proc. 9 (1988) 741.CrossRefGoogle Scholar
  16. 16.
    M. J. Hoffmann, A. Nagel, P. Greil and G. Petzow, J. Amer. Ceram. Soc. 72 (1989) 765.CrossRefGoogle Scholar
  17. 17.
    C. H. Hsueh, ibid. 71 (1988) C442.CrossRefGoogle Scholar
  18. 18.
    F. F. Lange, J. Mater. Res. 2 (1987) 59.CrossRefGoogle Scholar
  19. 19.
    K. Wilfinger and W. R. Cannon, Ceram. Engng Sci. Proc. 7 (1986) 1169.CrossRefGoogle Scholar
  20. 20.
    Powder Diffraction File, Card No. 10-173 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA) (1959).Google Scholar
  21. 21.
    Powder Diffraction File, Card No. 29-1129 (Joint Committee on Powder Diffraction Standards, Swarthmore, PA) (1977).Google Scholar
  22. 22.
    D. S. Adcock and I. C. McDowall, J. Amer. Ceram. Soc. 40 (1957) 355.CrossRefGoogle Scholar
  23. 23.
    T. J. Fennelly and J. S. Reed, ibid. 55 (1972) 264.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Young-Wook Kim
    • 1
  • June-Gunn Lee
    • 1
  1. 1.Structural Ceramics LaboratoryKorea Institute of Science and TechnologyCheongryang, SeoulKorea

Personalised recommendations