Journal of Materials Science

, Volume 26, Issue 5, pp 1253–1258 | Cite as

The kinematics of an active zone during fatigue crack layer growth in polystyrene

  • J. Botsis
  • X. Q. Zhang


An investigation of the kinematics of an active zone (or process zone) evolution in polystyrene during fatigue fracture is reported. Experiments were conducted on tension-tension singleedge-notched specimens of 0.25 mm thickness. Craze characterization was carried out on thinned sections of the active zone at six consecutive configurations. Analysis consisted of quantitative comparison of ratios of the inertia moments of the active zone at consecutive configurations. The results indicate that for the particular loading history considered, damage evolution can be approximated by a linear transformation of the space variables. The fracture process can be described by the translation and deformation of the active zone. Consequently, the corresponding energy release rates can be expressed by the J1, M and Nij integrals. The results of this analysis agree with the kinematics proposed by the crack layer model.


Fatigue Polystyrene Release Rate Fatigue Crack Energy Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Hellan, “Introduction to Fracture Mechanics” (McGraw-Hill, New York, 1984).Google Scholar
  2. 2.
    H. E. Andrews and J. B. Walker, Proc. Roy. Soc. A325 (1971) 57.CrossRefGoogle Scholar
  3. 3.
    E. P. Bretz, R. W. Bretz, R. W. Hertzderg and J. A. Manson, Polymer 22 (1981) 1272.CrossRefGoogle Scholar
  4. 4.
    A. Chudnovsky, A. Moet, R. J. Bankert and T. M. Takemori, J. Appl. Phys. 54 (1985) 5562.CrossRefGoogle Scholar
  5. 5.
    A. Sandt and E. Hornbogen, J. Mater. Sci. 19 (1981) 2915.CrossRefGoogle Scholar
  6. 6.
    J. Botsis, A. Chudnovsky and A. Moet, Int. J. Fract. 33 (1987) 263.CrossRefGoogle Scholar
  7. 7.
    R. H. Hoagland, T. G. Hahn and A. R. Rosenfield, Rock Mech. 5 (1973) 77.CrossRefGoogle Scholar
  8. 8.
    M. T. Takemori and R. P. Kambour, J. Mater. Sci. 16 (1981) 1110.CrossRefGoogle Scholar
  9. 9.
    N. J. Mills and J. N. Walker, ibid. 15 (1980) 1840.Google Scholar
  10. 10.
    W. E. Andrews and S. P. Barnes, in “International Conference on Deformation Yield and Fracture of Polymers” (The Plastics and Rubber Institute, Cambridge, UK, 1982) p. 8.1.Google Scholar
  11. 11.
    N. Haddaoui, A. Chudnovsky and A. Moet, Polymer 27 (1985) 1377.CrossRefGoogle Scholar
  12. 12.
    G. A. Evans and E. A. Heuer, J. Amer. Ceram. Soc. 63 (1980) 246.Google Scholar
  13. 13.
    A. Chudnovsky and M. Bessendorf, “Crack Layer Morphology and Toughness Characterization in Steels”, NASA Report 168 154 (1983).Google Scholar
  14. 14.
    R. N. Lang, T. A. Manson and R. W. Hertzberg, ACS Organ. Coating Appl. Polym. Sci. 49 (1983) 48.Google Scholar
  15. 15.
    P. X. Nguyen and A. Moet, J. Vinyl Tech. 7 (1985) 140.CrossRefGoogle Scholar
  16. 16.
    Idem, Polym. Composites 8 (1987) 298.CrossRefGoogle Scholar
  17. 17.
    E. F. Burech, “Fracture”, Vol. 3 (Pergamon, London, 1972) p. 929.Google Scholar
  18. 18.
    J. N. Claussen, J. Amer. Ceram. Soc. 59 (1976) 49.CrossRefGoogle Scholar
  19. 19.
    A. Chudnovsky, “Crack Layer Theory”, NASA Report 174636 (1984).Google Scholar
  20. 20.
    Idem, “Crack Layer Theory”, in 10th US National Conference on Applied Mechanics, edited by J. P. Lamb (ASME, Austin, Texas, 1986) p. 97.Google Scholar
  21. 21.
    A. Chudnovsky, V. Dunaevsky and V. A. Khandogi, Arch. Mech. 30 (1978) 165.Google Scholar
  22. 22.
    A. Chudnovsky and B. Gommerstadt, Int. J. Solids Struct. 22 (1986) 721.CrossRefGoogle Scholar
  23. 23.
    S. Aoki, K. Kishimoto and M. Sakata, J. Appl. Mech. 48 (1981) 825.CrossRefGoogle Scholar
  24. 24.
    V. A. Khandogi and A. Chudnovsky, in “Dynamics and Strength of Aircraft Structures” (edited by K. M. Kurshin, in Russian) (Novosirbisk, 1978) p. 148.Google Scholar
  25. 25.
    S. A. Holik, R. P. Kambour, D. G. Fink and S. Y. Hobbs, in “Microstructural Science”, Vol. 7, edited by LeMay, Fallon and McCall (Elsevier, North Holand, 1978) p. 357.Google Scholar
  26. 26.
    J. Botsis, Polymer 29 (1988) 457.CrossRefGoogle Scholar
  27. 27.
    X. Q. Zhang and J. Botsis, to be published.Google Scholar
  28. 28.
    J. Botsis, J. Mater. Sci. 24 (1989) 2018.CrossRefGoogle Scholar
  29. 29.
    P. R. Bevington, “Data Reduction and Error Analysis for the Physical Sciences” (McGraw-Hill, New York, 1969).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • J. Botsis
    • 1
  • X. Q. Zhang
    • 1
  1. 1.Department of Civil Engineering, Mechanics and MetallurgyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations