Journal of Materials Science

, Volume 26, Issue 5, pp 1228–1235 | Cite as

Non-linear concentration-dependent electrical properties of some semiconducting vanadate glasses

  • K. K. Som
  • B. K. Chaudhuri


Characterizations of (50 − x) P2O5-x M-50V2O5 (M = Bi2O3, Sb2O3, and GeO2 and x=0 to 45 mol% M) and P2O5-Bi2O3 semiconducting oxide glasses have been made from studies of electrical conductivities (both a.c. and d.c.) in the temperature range 77 to 400 K. All these glasses showed some interesting non-linear variation of d.c. and a.c. conductivity, together with other properties for particular values of M (between 20 and 30 mol% M). Because the non-vanadate (1−x) P2O5-x Bi2O3 glasses also showed similar conductivity anomaly (minimum) around 25 mol% Bi2O3 with a corresponding maximum in the activation energy (W), it is concluded (in contradiction to earlier suggestions) that not only the ratio β (= V5+/V4+) but also the network-former ions in the vanadate glasses make a substantial contribution to the anomalous concentration variation of the physical properties of these glasses. The electrical conduction in these glasses is found to be mainly due to hopping of polarons in the adiabatic approximation. At low temperature, the d.c. conductivity obeys Mott's T−1/4 behaviour. The a.c. conductivity obeying the general ωs law (exponent s lying between 0.85 and 0.98) supports the theory based on the hopping over the barrier model.


Activation Energy Electrical Conduction Vanadate Bi2O3 Substantial Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Mackenzie, “Modern Aspects of Vitreous State” (Butterworth, London, 1964).Google Scholar
  2. 2.
    H. Fritzsche, in “Amorphous and Liquid Semiconductors”, edited by J. Tauc (Plenum Press, London, 1974) p. 313.CrossRefGoogle Scholar
  3. 3.
    H. Hirashima, Y. Watanabe and T. Yoshida, J. Non-Cryst. Solids 95 (1987) 825.CrossRefGoogle Scholar
  4. 4.
    T. Yoshida, H. Hirashima and M. Kato, Yogyo-Kyokai-Shi 93 (1985) 244.CrossRefGoogle Scholar
  5. 5.
    A. Ghosh and B. K. Chaudhuri, Ind. J. Phys. 58A (1984) 62.Google Scholar
  6. 6.
    Idem., in “Metallic and Semiconducting Glasses-II”, edited by A. K. Bhatnagar (Trans. Tech, Switzerland, 1986) p. 515.Google Scholar
  7. 7.
    Bh. V. J. Rao, J. Amer. Ceram. Soc. 49 (1966) 605.CrossRefGoogle Scholar
  8. 8.
    Idem., ibid. 48 (1965) 311.CrossRefGoogle Scholar
  9. 9.
    A. Ghosh and B. K. Chaudhuri, J. Non-Cryst. Solids 83 (1986) 151.CrossRefGoogle Scholar
  10. 10.
    Idem., J. Mater. Sci. 22 (1987) 2369.CrossRefGoogle Scholar
  11. 11.
    M. Sayer and A. Mansingh, Phys. Rev. B6 (1972) 4629.CrossRefGoogle Scholar
  12. 12.
    V. K. Dhawan, A. Mansingh and M. Sayer, J. Non-Cryst. Solids 51 (1982) 87.CrossRefGoogle Scholar
  13. 13.
    G. S. Linsley, A. E. Owen and F. M. Hayatee, ibid. 4 (1970) 208.CrossRefGoogle Scholar
  14. 14.
    C. H. Chung, J. D. Mackenzie and L. Murawski, Rev. Chimie Minerale 16 (1979) 308.Google Scholar
  15. 15.
    L. Murawski, C. -H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 32 (1979) 91.CrossRefGoogle Scholar
  16. 16.
    C. H. Chung and J. D. Mackenzie, ibid. 42 (1980) 357.CrossRefGoogle Scholar
  17. 17.
    J. Appel, in “Solid State Physics”, edited by F. Seitz, D. Turnbull and H. Ehrenreich, Vol. 21 (Academic Press, London and New York, 1968) p. 193.Google Scholar
  18. 18.
    R. M. Brown, PhD thesis, University of Illinois, 1966.Google Scholar
  19. 19.
    K. K. Som and B. K. Chaudhuri, J. Mater. Sci. 25 (1990) 000.Google Scholar
  20. 20.
    B. K. Chaudhuri, K. Chaudhuri and K. K. Som, J. Phys. Chem. Solids 50 (1989) 1137.CrossRefGoogle Scholar
  21. 21.
    B. K. Chaudhuri, unpublished.Google Scholar
  22. 22.
    I. G. Austin and N. F. Mott, Adv. Phys. 18 (1969) 41.CrossRefGoogle Scholar
  23. 23.
    N. F. Mott, J. Non-Cryst. Solids 1 (1968) 1.CrossRefGoogle Scholar
  24. 24.
    N. F. Mott and E. A. Davis, “Electronic Processes in NonCrystalline Materials”, 2nd Edn (Clarendon, Oxford, 1979).Google Scholar
  25. 25.
    A. Miller and E. Abrahams, Phys. Rev. 120 (1960) 745.CrossRefGoogle Scholar
  26. 26.
    L. Murawski and O. Gzowski, Acta Phys. Polanica A50 (1976) 463.Google Scholar
  27. 27.
    L. Pauling, “Nature of Chemical Bonds and the Structure of Molecules and Crystals”, 3rd Edn (Cornell University Press, Ithaca, New York, 1960) p. 98.Google Scholar
  28. 28.
    A. Mansingh, J. K. Vaid and R. P. Tandon, J. Phys. C. Solid State Phys. 8 (1975) 1023.CrossRefGoogle Scholar
  29. 28a.
    A. Mansingh, V. K. Dhawan and M. Sayer, Phil. Mag. B 48 (1983) 215.CrossRefGoogle Scholar
  30. 29.
    G. E. Pike, Phys. Rev. B6 (1972) 1572.CrossRefGoogle Scholar
  31. 30.
    S. R. Elliott, Phil. Mag. 36 (1977) 1291.CrossRefGoogle Scholar
  32. 31.
    Idem., Adv. Phys. 36 (1987) 135.CrossRefGoogle Scholar
  33. 32.
    A. R. Long, Adv. Phys. 31 (1982) 553.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • K. K. Som
    • 1
  • B. K. Chaudhuri
    • 1
  1. 1.Department of Solid State PhysicsIndian Association for the Cultivation of ScienceCalcuttaIndia

Personalised recommendations