Journal of Materials Science

, Volume 26, Issue 5, pp 1211–1215 | Cite as

The origin of heteroepitaxy in the system of uniaxially oriented isotactic polypropylene and polyethylene

  • J. Petermann
  • Y. Xu


The epitaxy of polyethylene (PE) on oriented α and β-form of isotactic polypropylene (PP) at different crystallization temperatures and rates have been investigated. The result shows that the epitaxy of PE on β-form of PP does not differ from that on the α-form of PP. The epitactic alignment of the PE lamellae on the PP films becomes more perfect with higher crystallization rates of PE. The epitaxy of PE on α- or β-form of PP does not occur at crystallization temperatures higher than 123 °C. A nucleation controlled process for the alignment of the PE is proposed.


Polymer Crystallization Polyethylene Polypropylene Control Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Willems, Discussion Faraday Soc. 25 (1957) 111.CrossRefGoogle Scholar
  2. 2.
    Y. Yamashita, S. Nishimura, K. Shimamura and K. Monobe, Makromol. Chem. 187 (1986) 1757.CrossRefGoogle Scholar
  3. 3.
    J. C. Wittmann, A. M. Hodge and B. Lotz, J. Polym. Sci., Polym. Phys. Edn 21 (1983) 2495.CrossRefGoogle Scholar
  4. 4.
    S. Isoda, Polymer 25 (1984) 615.CrossRefGoogle Scholar
  5. 5.
    J. A. Koutsky, A. G. Walton and E. Baer, J. Polym. Sci. A2, 4 (1966) 611.Google Scholar
  6. 6.
    B. Wunderlich, in “Macromolecular Physics”, Vol. 1 (Academic Press, New York, 1973) p. 267.Google Scholar
  7. 7.
    A. J. Pennings, J. M. A. A. Van Der Mark and H. C. Booij, Kolloid Z. Z. Polymere 236 (1970) 99.CrossRefGoogle Scholar
  8. 8.
    T. Takahashi, M. Inamura and I. Tsujimoto, J. Polym. Sci. Polym. Lett. 8 (1970) 651.CrossRefGoogle Scholar
  9. 9.
    J. C. Wittmann and B. Lotz, J. Polym. Sci., Polym. Phys. Edn 23 (1985) 205.CrossRefGoogle Scholar
  10. 10.
    B. Gross and J. Petermann, J. Mater. Sci. 19 (1984) 105.CrossRefGoogle Scholar
  11. 11.
    J. Petermann and R. M. Gohil, ibid. 14 (1979) 2260.CrossRefGoogle Scholar
  12. 12.
    H. D. Keith, F. J. Padden, Jr. H. M. Walter and H. W. Wyckoff, J. Appl. Phys. 30 (1959) 1485.CrossRefGoogle Scholar
  13. 13.
    E. J. Addink and J. Beintema, Polymer 2 (1961) 185.CrossRefGoogle Scholar
  14. 14.
    A. Turner-Jones, U. M. Aizlewood and D. R. Beckelt, Makromol. Chem. 75 (1964) 134.CrossRefGoogle Scholar
  15. 15.
    A. Turner-Jones and A. J. Cobbold, J. Polym. Sci., Polym. Lett. 6 (1968) 539.CrossRefGoogle Scholar
  16. 16.
    R. J. Samuels and Rena Yang Yee, J. Polym. Sci. 10 (1972) 385.CrossRefGoogle Scholar
  17. 17.
    L. Melillo and B. Wunderlich, Kolloid Z. Z. Polym. 250 (1972) 417.CrossRefGoogle Scholar
  18. 18.
    Y. Xu, T. Asano, A. Kawaguchi, U. Rieck and J. Petermann, J. Mater. Sci. Lett. 8 (1989) 675.CrossRefGoogle Scholar
  19. 19.
    B. Lotz and J. C. Wittmann, J. Polym. Sci., Polym. Phys. Edn 24 (1986) 1559.CrossRefGoogle Scholar
  20. 20.
    J. Petermann, G. Broza, U. Rieck and A. Kawaguchi, J. Mater. Sci. 22 (1987) 1477.CrossRefGoogle Scholar
  21. 21.
    A. Kawaguchi, T. Okihara, M. Ohara, M. Tsuji, K. Katayama and J. Petermann, J. Cryst. Growth 94 (1989) 857.CrossRefGoogle Scholar
  22. 22.
    B. Wunderlich, in “Macromolecular Physics”, Vol. 2 (Academic Press, New York, 1976) p. 29.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • J. Petermann
    • 1
  • Y. Xu
    • 1
  1. 1.Polymer and Composites GroupTechnical University Hamburg-HarburgHamburg 90Germany

Personalised recommendations