Advertisement

Journal of Materials Science

, Volume 26, Issue 5, pp 1165–1172 | Cite as

The effect of cross-linking on crazing in polyethersulphone

  • C. J. G. Plummer
  • A. M. Donald
Papers

Abstract

Cross-links have been introduced into thin films of PES (polyethersulphone)/1 wt% sulphur by heating them in air at 350 °C. The effect of this is to suppress crazing in favour of shear deformation in high-temperature regimes where disentanglement crazing dominates for uncross-linked films of the same composition. We argue that light cross-linking (one or two cross-links per chain) is sufficient to give rise to a finite gel fraction in the films which, because it effectively forms an infinite network, cannot disentangle. Thus for crazing to occur, chains which form part of the gel fraction must always break rather than disentangle. This has the effect of raising the crazing stress relative to the yield stress in the weakly temperaturedependent regime of crazing at high temperature, where disentanglement is normally considered sufficiently rapid for entanglement loss not to contribute to the crazing stress. Hence as the gel fraction is increased by increasing the heat-treatment time, crazing is suppressed at the highest temperatures with respect to shear deformation, leading to a second transition, this time from crazing back to shear.

Keywords

Polymer Sulphur Thin Film Shear Deformation Infinite Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Kramer, Adv. Polym. Sci. 52/53 (1983) 1.CrossRefGoogle Scholar
  2. 2.
    A. M. Donald, and E. J. Kramer, J. Polym. Sci. Poly. Phys. Edn 20 (1982) 899.CrossRefGoogle Scholar
  3. 3.
    Idem., J. Mater. Sci. 17 (1982) 1871.CrossRefGoogle Scholar
  4. 4.
    A. M. Donald, ibid. 20 (1985) 2634.CrossRefGoogle Scholar
  5. 5.
    C. J. G. Plummer and A. M. Donald, J. Polym. Sci. Polym. Phys. Edn 27 (1989) 325.CrossRefGoogle Scholar
  6. 6.
    N. Verheulpen-Heymans, Polymer 20 (1979) 356.CrossRefGoogle Scholar
  7. 7.
    L. L. Berger and E. J. Kramer, Macromol. 20 (1987) 1980.CrossRefGoogle Scholar
  8. 8.
    T. C. B. McLeish, C. J. G. Plummer and A. M. Donald, Polymer 30 (1989) 1651.CrossRefGoogle Scholar
  9. 9.
    E. J. Kramer and L. L. Berger, Adv. Polym. Sci. 91/92 (1990) 1.CrossRefGoogle Scholar
  10. 10.
    N. R. Farrar and E. J. Kramer, Bull. Amer. Phys. Soc. 26 (1981) 463.Google Scholar
  11. 11.
    C. S. Henkee and K. J. Kramer, J. Polym. Sci. Polym. Phys. Edn 22 (1984) 721.CrossRefGoogle Scholar
  12. 12.
    L. L. Berger and E. J. Kramer, J. Mater. Sci. 23 (1988) 3536.CrossRefGoogle Scholar
  13. 13.
    C. J. G. Plummer and A. M. Donald, Macromol. to be published.Google Scholar
  14. 14.
    P. A. Staniland, personal communication (1988).Google Scholar
  15. 15.
    B. D. Lauterwasser and E. J. Kramer, Phil. Mag. A39 (1979) 469.CrossRefGoogle Scholar
  16. 16.
    C. J. G. Plummer and A. M. Donald J. Mater. Sci. 24 (1989) 1399.CrossRefGoogle Scholar
  17. 17.
    Idem., J. Appl. Polym. Sci. to be published.Google Scholar
  18. 18.
    P. G. Degennes, J. Chem. Phys. 55 (1971) 572.CrossRefGoogle Scholar
  19. 19.
    M. Doi and S. F. Edwards, J. Chem. Soc. Farad. Trans. 74 (1978) 1789, 1802.CrossRefGoogle Scholar
  20. 20.
    S. G. James, PhD thesis, University of Cambridge (1988).Google Scholar
  21. 21.
    P. G. Degennes, J. Phys. (Paris) 36 (1975) 1199.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • C. J. G. Plummer
    • 1
  • A. M. Donald
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations