Advertisement

Journal of Materials Science

, Volume 26, Issue 16, pp 4499–4510 | Cite as

Analysis of isothermal and isochronal annealing in deformed Zn and Zn-Ag

  • B. Marczewska-Lasa
  • M. Zehetbauer
  • W. Pfeiler
  • B. Wielke
Papers

Abstract

Zn and Zn-Ag polycrystals have been deformed by rolling at 293 K to true strains ε=0.05–3.8. After deformation, samples were subjected to isothermal and isochronal anneals, and thereby investigated by intermittent measurements of strength, electrical resistivity, and TEM. Along the isotherms at 293 K, quite unusual hardening effects were observed, which turned out to be strongly affected by the applied prestrain and alloy content. The experimental results can be consistently ascribed to loop formation and loop coarsening from deformation-induced vacancies whereas other explanations, such as loop formation by oxidation and/or phase transformations, can be largely ruled out. Saada's model accounts satisfactorily for the vacancy concentrations measured. In the framework of a loop-hardening theory by Kirchner, the experimentally found values of vacancy concentration and loop density/size yield the right order of magnitude for the strength effects observed. With the isochronal anneals, three stages could be found which are related to loop annealing, dislocation rearrangement, and dislocation annealing.

Keywords

Oxidation Polymer Phase Transformation Electrical Resistivity True Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Seeger and H. Träuble, Z. Metallkde 51 (1960) 435.Google Scholar
  2. 2.
    A. Seeger, H. Kronmüller, S. Mader and H. Träuble, Phil. Mag. 6 (1961) 639.CrossRefGoogle Scholar
  3. 3.
    K. H. Adams, T. Vreeland Jr and D. S. Wood, Mater. Sci. Engng 2 (1967) 37.CrossRefGoogle Scholar
  4. 4.
    F. F. Lavrentev, O. P. Salita, P. D. Shutyayev, Phys. Met. Metall. 41 (1976) 412.Google Scholar
  5. 5.
    F. F. Lavrentev and V. L. Vladimirova, Mater. Sci. Engng 30 (1977) 141.CrossRefGoogle Scholar
  6. 6.
    F. F. Lavrentev, O. P. Salita and P. D. Shutyayev, Phys. Met. Metall 43 (1977) 1300.Google Scholar
  7. 7.
    M. Bocek, Phys. Status Solidi 3 (1963) 2169.CrossRefGoogle Scholar
  8. 8.
    B. Wielke, Phys. Status Solidi (a) 33 (1976) 241.CrossRefGoogle Scholar
  9. 9.
    B. Mikulowski, B. Wielke and H. O. K. Kirchner, Acta Metall. 30 (1982) 633.CrossRefGoogle Scholar
  10. 10.
    B. Wielke, A. Chalupka and G. Schöck, in “Proceedings ICSMA 5”, Aachen, edited by P. Haasen et al. (Pergamon Press, Oxford, 1979) p. 65.Google Scholar
  11. 11.
    H. O. K. Kirchner, Z. Metallkde 67 (1976) 525.Google Scholar
  12. 12.
    J. Spyridelis, Mater. Res. Bull. 6 (1971) 1345.CrossRefGoogle Scholar
  13. 13.
    S. J. Burns and B. Rössler, Phys. Status Solidi (a) 13 (1972) K91.CrossRefGoogle Scholar
  14. 14.
    D. Michell and G. J. Ogilvie, Phys. Status Solidi 15 (1968) 83.CrossRefGoogle Scholar
  15. 15.
    C. G'sell, PhD thesis, Inst. Nat. Polytechn. de Lorraine, Nancy, France (1977).Google Scholar
  16. 16.
    R. E. Smallman and K. H. Westmacott, Mater. Sci. Engng 9 (1972) 249.CrossRefGoogle Scholar
  17. 17.
    M. Zehetbauer and D. Trattner, ibid. 89 (1987) 93.CrossRefGoogle Scholar
  18. 18.
    B. Mikulowski and B. Wielke, Czech. J. Phys. B 35 (1985) 286.CrossRefGoogle Scholar
  19. 19.
    Idem, ibid. 38 (1988) 453.CrossRefGoogle Scholar
  20. 20.
    A. Berghezan, A. Fourdeux and S. Amelinckx, Acta Metall. 9 (1961) 464.CrossRefGoogle Scholar
  21. 21.
    H. Müller, Thesis, Technische Universität Braunschweig, FRG (1983).Google Scholar
  22. 22.
    W. Pfeiffer, Phys. Status Solidi 2 (1962) 1727.CrossRefGoogle Scholar
  23. 23.
    R. W. Cahn, in “Physical Metallurgy”, edited by R. W. Cahn and P. Haasen (Elsevier, Amsterdam, 1983) Ch. 25, p. 1595.Google Scholar
  24. 24.
    J. Nihoul, Phys. Status Solidi 3 (1963) 2061.CrossRefGoogle Scholar
  25. 25.
    P. Ehrhardt and B. Schönfeld, Phys. Rev. B 19 (1979) 3896.CrossRefGoogle Scholar
  26. 26.
    Idem, ibid. 19 (1979) 3905.CrossRefGoogle Scholar
  27. 27.
    C. Hidalgo, S. Linderoth and N. de Diego, Phil. Mag. A54 (1986) L 61.CrossRefGoogle Scholar
  28. 28.
    C. Hidalgo, N. de Diego and P. Moser, J. Appl. Phys. A40 (1986) 25.CrossRefGoogle Scholar
  29. 29.
    M. Zehetbauer, J. Schmidt and F. Haessner, Scripta Metall. 25 (1991) 559.CrossRefGoogle Scholar
  30. 30.
    H. J. Wollenberger, in “Physical Metallurgy”, edited by R. W. Cahn and P. Haasen (Elsevier, Amsterdam, 1983) Ch. 17, p. 1139.Google Scholar
  31. 31.
    J. Schmidt, unpublished results, Technische Universität Braunschweig, FRG (1989).Google Scholar
  32. 32.
    H. Kimura and R. Maddin, in “Quench Hardening in Metals” (North Holland, 1971) p. 30.Google Scholar
  33. 33.
    D. M. Fegredo, J. Inst. Metals 93 (1964/65) 268.Google Scholar
  34. 34.
    M. Zehetbauer, J. Phys. Cond. Matt. 1 (1989) 2833.CrossRefGoogle Scholar
  35. 35.
    S. Ceresara, H. Elkholy and T. Federighi, Phil. Mag. 12 (1965) 1105.CrossRefGoogle Scholar
  36. 36.
    F. Haessner and J. Schmidt, Scripta Metall. 22 (1988) 1917.CrossRefGoogle Scholar
  37. 37.
    M. Deighton and R. N. Parkins, Trans. Met. Soc. AIME 245 (1969) 1917.Google Scholar
  38. 38.
    A. Couret and D. Caillard, Acta Metall. 33 (1985) 1447.CrossRefGoogle Scholar
  39. 39.
    Idem, ibid. 33 (1985) 1455.CrossRefGoogle Scholar
  40. 40.
    G. Schöck and W. Püschl, in “Proceedings of the 8th International Conference on Strength of Metals and Alloys”, (ICSMA 8), Tampere, Finland, edited by P. O. Kettunen, T. K. Lepistö and M. E. Lehtonen (Pergamon Press, Oxford, 1988) p. 239.Google Scholar
  41. 41.
    H. G. van Bueren, Acta Metall. 3 (1955) 519.CrossRefGoogle Scholar
  42. 42.
    Idem, in “Imperfections in Crystals” (North Holland, 1960) p. 153.Google Scholar
  43. 43.
    G. Saada, Acta Metall. 9 (1961) 166.CrossRefGoogle Scholar
  44. 44.
    Idem, ibid. 9 (1961) 965.CrossRefGoogle Scholar
  45. 45.
    P. B. Hirsch, in “Internal Stresses and Fatigue in Metals”, edited by G. M. Rasweiler and W. L. Grube (Elsevier, 1959) p. 139.Google Scholar
  46. 46.
    A. v. d. Beukel, in “Vacancies and Interstitials of Metals”, edited by A. Seeger, D. Schumacher, W. Schilling and J. Diehl (North Holland, Amsterdam, 1969) p. 427.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • B. Marczewska-Lasa
    • 1
  • M. Zehetbauer
    • 1
  • W. Pfeiler
    • 1
  • B. Wielke
    • 1
  1. 1.Institut für Festkörperphysik der Universität WienWienAustria

Personalised recommendations