Advertisement

Journal of Materials Science

, Volume 26, Issue 16, pp 4445–4454 | Cite as

Microstructure and origin of cross-tie fibrils in crazes

  • P. Miller
  • D. J. Buckley
  • E. J. Kramer
Papers

Abstract

Crazes were grown in thin films of polystyrene (PS) at various temperatures and the resulting craze fibril microstructures were examined using low-angle electron diffraction (LAED). A quasi-regular array of cross-tie fibrils pull the main fibrils away from the tensile axis by an angle ± β/2°. As a result, the LAED patterns from crazes grown at temperatures T<50°C exhibited split diffraction lobes centred about the equatorial axis of the LAED pattern. It was found that β decreased with increasing crazing temperature and that the split lobes could no longer be resolved at the highest temperatures. Diffuse meridional diffraction spots due to scattering from the quasi-regular array of cross-tie fibrils were seen in the LAED patterns from crazes grown at low temperatures. The spacing of the cross-tie fibrils, R, determined from these patterns, was found to increase with the crazing temperature. A new model of craze widening was proposed that accounts for the formation of cross-tie fibrils by allowing some of the entangled polymer strands which bridge two fibrils in the active zone to survive fibrillation. Cross-tie fibrils are created when several such strands pile up locally, and the craze/bulk interface bypasses the pile-up.

Keywords

Polymer Microstructure Thin Film Polystyrene Fibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Rabinowitz and P. Beardmore, CRC Rev. Macromol. Sci. 1 (1972) 1.Google Scholar
  2. 2.
    R. P. Kambour, J. Polym. Sci. Macromol. Rev. 7 (1973) 1.CrossRefGoogle Scholar
  3. 3.
    A. N. Gent, “The Mechanics of Fracture”, Applied Mechanics Division, Vol. 19, edited by F. Erdogon (ASME, New York, 1976) p. 55.Google Scholar
  4. 4.
    E. J. Kramer, “Microscopic and Molecular Fundamentals of Crazing”, in “Advances in Polymer Science 52/53” (Springer-Verlag, Berlin, 1983) Ch. 1, p. 7.Google Scholar
  5. 5.
    A. M. Donald and E. J. Kramer, Phil. Mag. 43A (1981) 857.CrossRefGoogle Scholar
  6. 6.
    P. Miller, PhD thesis, Cornell University (1987) Ch. 2.Google Scholar
  7. 7.
    C. C. Kuo, S. L. Phoenix, and E. J. Kramer, J. Mater. Sci. Lett. 4 (1985) 459.CrossRefGoogle Scholar
  8. 8.
    L. L. Berger and E. J. Kramer, Macromol. 20 (1987) 1980.CrossRefGoogle Scholar
  9. 9.
    P. Behan, M. Bevis and D. Hull, Proc. Roy. Soc. Lond. A343 (1975) 525.CrossRefGoogle Scholar
  10. 10.
    J. Murray and D. Hull, Polymer 10 (1969) 451.CrossRefGoogle Scholar
  11. 11.
    B. D. Lauterwasser and E. J. Kramer, Phil. Mag. 39A (1979) 469.CrossRefGoogle Scholar
  12. 12.
    H. R. Brown, to be published.Google Scholar
  13. 13.
    A. C.-M. Yang and E. J. Kramer, J. Polym. Sci. Polym. Phys. Edn 23 (1985) 1353.CrossRefGoogle Scholar
  14. 14.
    Idem, J. Mater. Sci. 21 (1986) 3601.CrossRefGoogle Scholar
  15. 15.
    L. L. Berger, E. J. Kramer, R. A. Bubeck and D. J. Buckley, J. Polym. Sci. Polym. Phys. Edn 25 (1987) 1679.CrossRefGoogle Scholar
  16. 16.
    A. M. Donald and E. J. Kramer, J. Mater. Sci. 16 (1981) 2967.CrossRefGoogle Scholar
  17. 17.
    E. Paredes and E. W. Fischer, Makromol. Chem. 180 (1979) 2707.CrossRefGoogle Scholar
  18. 18.
    H. R. Brown, Mater. Sci. Rep. 2 (1987) 315.CrossRefGoogle Scholar
  19. 19.
    A. C.-M. Yang, E. J. Kramer, C. C. Kuo, and S. L. Phoenix, Macromol. 19 (1986) 2020.CrossRefGoogle Scholar
  20. 20.
    L. L. Berger, ibid. 22 (1989) 3160.CrossRefGoogle Scholar
  21. 21.
    C. Maestrini and E. J. Kramer, Polymer, 32 (1991) 609.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • P. Miller
    • 1
  • D. J. Buckley
    • 1
  • E. J. Kramer
    • 1
  1. 1.Department of Materials Science and Engineering, and the Materials Science CenterCornell UniversityIthacaUSA

Personalised recommendations