Journal of Materials Science

, Volume 26, Issue 16, pp 4439–4444 | Cite as

Piezoelectric properties of (Pb, Sr) (Zr, Ti, Mn, Zn, Nb)O3 piezoelectric ceramic

  • Long Wu
  • Chick -Kwo Liang
  • Chin -Fang Shieu


In this paper, the aim is to study the piezoelectric properties of (Pb, Sr)[(Zr, Ti)(Zn1/3Nb2/3) (Mn1/3Nb2/3)]O3 ceramic with compositions close to the morphotropic phase boundary. The dielectric and piezoelectric properties of this system were investigated by way of changed contents of two main compounds, TiO2 and Mn1/3Nb2/3. There are two phases existing in this system, one tetragonal and the other pseudocubic. With a constant amount of 4 mol% Pb(Mn1/3Nb2/3)O3 and 8 mol% Pb(Zn1/3Nb2/3)O3, the morphotropic phase boundary exists when the amount of PbTiO3 is nearly equal to 44 mol%. The structure is perovskite with pseudocubic symmetry for PbTiO3 less than 44 mol%, but it is tetragonal symmetry for higher PbTiO3 concentrations. The planar coupling factor and piezoelectric constant are higher for compositions near the morphotropic phase boundary, but the mechanical quality factor and longitudinal velocity are lowest. As far as the dielectric constant of poled material is concerned, its maximum in the multicomponent system is displaced into the tetragonal phase and does not coincide with the maximum of electromechanical quality factor. The variation of remanent polarization with composition is the same as that of the coupling factor. Thus, compositions with the tetragonal phase are “ferroelectrically harder” and those with the pseudocubic phase are “ferroelectrically softer” than compositions close to the morphotropic phase boundary. Besides the influence of Ti, the effect of Mn1/3Nb2/3 is also studied in this paper. The planar coupling factor increases with increasing Mn1/3Nb2/3 and reaches a maximum at 5 mol% Mn1/3Nb2/3, and then decreases for higher Mn1/3Nb2/3 values. The mechanical quality factor increases, but the dielectric constant decreases, with increasing Mn1/3Nb2/3.


TiO2 Dielectric Constant Perovskite Tetragonal Phase Piezoelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ikeda, J. Phys. Soc. Jpn 14 (1959) 168.CrossRefGoogle Scholar
  2. 2.
    F. Kulcsar, J. Amer. Ceram. Soc. 42 (1959) 49.CrossRefGoogle Scholar
  3. 3.
    B. Jaffe, R. S. Roth and S. Marzullo, J. Res. Natl. Bur. Std. 55 (1955) 239.CrossRefGoogle Scholar
  4. 4.
    F. Kulcsar, J. Amer. Ceram. Soc. 42 (1959) 343.CrossRefGoogle Scholar
  5. 5.
    M. Marutake, Japanese Patent 16673 (1961).Google Scholar
  6. 6.
    F. Kulcsar, US Patent 3 00 6857 (1961).Google Scholar
  7. 7.
    H. Ouchi, K. Nagana and S. Hayakawa, J. Amer. Ceram. Soc. 48 (1965) 630.CrossRefGoogle Scholar
  8. 8.
    T. Kudo, Y. Yazaki, F. Naito and S. Sugaya, ibid. 53 (1970) 326.CrossRefGoogle Scholar
  9. 9.
    M. Takahashi and Takahashi, US Patent 3 699 045 (1972).Google Scholar
  10. 10.
    M. Takahashi, N. Tsubouchi, M. Yonezawa, T. Ohno and T. Akashi, NEC Res. Devel. 35 (1974) 57.Google Scholar
  11. 11.
    J. P. Guha and D. J. Hong, J. Amer. Ceram. Soc. 71 (1988) C-152.Google Scholar
  12. 12.
    P. Gr. Lucuta and D. Barb, ibid. 68 (1985) 533.CrossRefGoogle Scholar
  13. 13.
    S. S. Chang and J. A. Park, ibid. 60 (1979) 684.Google Scholar
  14. 14.
    C. B. Sawyer and C. H. Tower, Phys. Rev. 35 (1930) 269.CrossRefGoogle Scholar
  15. 15.
    “IRE Standards on Piezoelectric Crystal: Measurement of Piezoelectric Ceramic, 1961”, Proc. IRE 49 (1961) 1161.Google Scholar
  16. 16.
    V. A. Isupov and Yu. E. Stolypin, sov. Phys. — Solid State 11 (1969) 2067.Google Scholar
  17. 17.
    V. A. Isupov, ibid. 10 (1968) 989.Google Scholar
  18. 18.
    Z. Q. Zhuang, M. J. Haun, S. J. Jang and L. E. Cross, in Proceedings of 1986 IEEE 6th International Symposium on Application of Ferroelectrics (1986) p. 394.Google Scholar
  19. 19.
    E. G. Fesenko, A. Ya Dantsiger, L. A. Resnitchenko and M. F. Kupriyanov, Ferroelectrics 41 (1982) 137.CrossRefGoogle Scholar
  20. 20.
    V. A. Bokov, J. Technicheskoy Fiziki 27 (1957) 1784.Google Scholar
  21. 21.
    K. Carl and K.H. Hardtl, Phys. Status Solidi (a) 8 (1971) 87.CrossRefGoogle Scholar
  22. 22.
    M. Ya. Shirobokov and L. P. Kholodenko, J. Technicheskoy Fiziki 27 (1951) 1239.Google Scholar
  23. 23.
    D. A. Berlincourt, C. Cmolic and H. Jaffe, Proc. IRE 48 (1960) 220.CrossRefGoogle Scholar
  24. 24.
    K. Petrsch and K. J. Topf, Ber. Dt. Kerem. Ges. 47 (1970) 681.Google Scholar
  25. 25.
    P. S. Nicholson and N. D. Patel, Amer. Ceram. Soc. Bull. 65 (1986) 783.Google Scholar
  26. 26.
    H. T. Martirena and J. C. Burfoot, J. Phys. C: Solid State Phys. 7 (1974) 3182.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Long Wu
    • 1
  • Chick -Kwo Liang
    • 1
  • Chin -Fang Shieu
    • 1
  1. 1.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations