Journal of Materials Science

, Volume 26, Issue 16, pp 4383–4388 | Cite as

Morphology of polyamide 6-polybutadiene multiblock copolymers

  • K. A. H. Lindberg
  • H. E. Bertilsson


The morphology of polyamide 6-polybutadiene multiblock copolymers, commonly used for reaction injection moulding, have been investigated using transmission electron microscopy, dynamic mechanical techniques, calorimetry and wide angle X-ray diffraction. Phase separation is found to be almost complete and the crystallization of the PA6 blocks is slightly higher than in pure PA6. The morphology shows similarities to what has been reported for segmented polyether-esters. The PA6 lamellar dimensions found in the micrographs agree with dimensions calculated from melting point depression and X-ray data.


Polymer Electron Microscopy Crystallization Transmission Electron Microscopy Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bonart, Polymer 20 (1979) 1389.CrossRefGoogle Scholar
  2. 2.
    J. Foks, G. Michler and I. Nauman, ibid. 28 (1987) 2195.CrossRefGoogle Scholar
  3. 3.
    J. Foks and H. Janik, Pol. Eng. sci. 29 (1989) 113.CrossRefGoogle Scholar
  4. 4.
    I. D. Fridman and E. L. Thomas, Polymer 21 (1980) 388.CrossRefGoogle Scholar
  5. 5.
    I. D. Fridman, E. L. Thomas, L. J. Lee and Ch. M. Macosko, Polymer 21 (1980) 388.CrossRefGoogle Scholar
  6. 6.
    R. J. Cella, J. Polym. sci., Polym. Symp. 42 (1973) 727.CrossRefGoogle Scholar
  7. 7.
    R. M. Hedrick and J. D. Gabbert, 91st National AIChE Meeting, Detroit MI, 17 August, 1981.Google Scholar
  8. 8.
    R. M. Hedrick, J. D. Gabbert and M. H. Wohl, in “Reaction Injection Moulding”, edited by J. E. Kresta (ACS Symposium Series 270, 1985) p. 135.Google Scholar
  9. 9.
    J. E. Kurz, Polymer Process Engineering 3 (1985) 7.Google Scholar
  10. 10.
    H. Boublil, E. Okoroafor, M. Belhoucine and J. Rault, Polym. Eng. sci. 29 (1989) 679.CrossRefGoogle Scholar
  11. 11.
    D. R. Paul and J. W. Barlow, “Polymer Alloys II, Polymer Science and Technology”, Vol. 11, edited by D. Klempner and K. C. Frisch (Plenum Press, New York, 1980) pp. 239–53.CrossRefGoogle Scholar
  12. 12.
    K. Kobayashi and K. Sakaoku, Laboratory Investigation 11 (1965) 359.Google Scholar
  13. 13.
    M. S. Isaacson, “Specimen Damage in the Electron Microscope from Principles and Techniques of E. E. M. Biological Applications”, Vol. 7, edited by M. Hayat (Van Nostrand-Reinhold, New York, 1977) p. 1.Google Scholar
  14. 14.
    E. J. Roche and E. L. Thomas, Polymer 22 (1981) 333.CrossRefGoogle Scholar
  15. 15.
    P. H. Geil, “Polymer Single Crystals, Polymer Reviews”, Vol. 5 (Wiley & Sons, New York, 1963) p. 37.Google Scholar
  16. 16.
    B. Wunderlich, “Macromoleculàr Physics”, Vol. 1 (Academic Press, New York, 1973).Google Scholar
  17. 17.
    Idem., ibid., (1980).Google Scholar
  18. 18.
    M. Hirami, Macromol. Chem. 183 (1982) 2857.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • K. A. H. Lindberg
    • 1
  • H. E. Bertilsson
    • 2
  1. 1.Swedish Institute for Wood Technology ResearchSkellefteåSweden
  2. 2.Department of Polymeric MaterialsChalmers University of TechnologyGothenburgSweden

Personalised recommendations