Journal of Materials Science

, Volume 26, Issue 16, pp 4375–4382 | Cite as

Physical interpretation of fracture-toughening mechanisms

  • F. Guiu
  • R. N. Stevens


The basic idea behind the toughening of materials by the introduction of energy-absorbing or dissipating artefacts is critically re-examined. It is shown that energy dissipation by plastic deformation or other dissipative processes at the tip of a growing crack does not contribute to increasing the effective surface energy or the crack resistance of the material. Erroneous interpretations of toughening by the presence of fibres or by phase transformations occuring at the tip of a growing crack are discussed. It is argued that all processes which dissipate energy at the crack tip produce crack shielding and that this effect must be an important contribution to toughening. It is concluded that most of the features and properties embodied in methods of toughening can be explained by shielding effects and that the increase in toughness is due to a reduction in the local value of the crack extension force, or its equivalent stress intensity factor, and not to an increase in energy dissipated.


Plastic Deformation Surface Energy Phase Transformation Stress Intensity Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Griffith, Phil. Trans. R. Soc. (London) A221 (1920) 163.Google Scholar
  2. 2.
    G. R. Irwin, J. Appl. Mech. 24 (1957) 361.Google Scholar
  3. 3.
    J. R. Rice, ibid. 35 (1968) l379.CrossRefGoogle Scholar
  4. 4.
    J. F. Knott, “Fundamentals of Fracture Mechanics” (Butterworths, London, 1973).Google Scholar
  5. 5.
    F. Guiu and R. N. Stevens, in “Behaviour of short fatigue cracks”, EFG Publ. 1, edited by K. J. Miller and E. R. de Los-Rios (Mech. Eng. Publ. London, 1986) p. 402.Google Scholar
  6. 6.
    Idem, Int. J. Fracture, to be published.Google Scholar
  7. 7.
    R. N. Stevens and F. Guiu, Proc. R. Soc., to be published.Google Scholar
  8. 8.
    E. Orowan, in “Fatigue and fracture of metals”, edited by W. M. Murray (Wiley, New York, 1952) p. 139.Google Scholar
  9. 9.
    G. R. Irwin, “Fracturing of metals” (American Society for Metals, Cleveland, Ohio, 1948) p. 152.Google Scholar
  10. 10.
    H. L. Ewalds and R. J. H. Wanhill, “Fracture mechanics” (Edward Arnold, London, 1985).Google Scholar
  11. 11.
    J. M. Krafft, A. M. Sullivan and R. W. Boyle, in Proceedings of the Symposium on Crack Propagation, Cranfield, UK, 1962, Vol. 1 (Cranfield, UK, 1962) p. 8.Google Scholar
  12. 12.
    C. Gurney and J. Hunt, Proc. R. Soc. (London) A299 (1967) 508.Google Scholar
  13. 13.
    J. G. Williams, “Fracture mechanics of polymers” (EllisHorwood, London, 1984).Google Scholar
  14. 14.
    M. F. Kanninen and C. H. Popelar, “Advanced fracture mechanics” (Oxford University Press, New York, 1985).Google Scholar
  15. 15.
    J. A. Begley and J. D. Landes, American Society for Testing Materials, S.T.P. 514 (1972) 1.Google Scholar
  16. 16.
    C. E. Turner, in “Post-yield fracture mechanics”, edited by D. G. H. Latzko (Applied Science, London, 1979) p. 23.Google Scholar
  17. 17.
    J. Aveston, G. A. Cooper and A. Kelly, in Proceedings of the NPL Conference on The Properties of Fibre Composites, 1971 (IPC Science and Technology Press, Guildford, UK, 1971) p. 15.Google Scholar
  18. 18.
    B. Harris, Metal Science 14 (1980) 351.CrossRefGoogle Scholar
  19. 19.
    B. Harris, J. Moreley and D. C. Phillips, J. Mater. Sci. 10 (1975) 2050.CrossRefGoogle Scholar
  20. 20.
    M. R. Piggott, ibid. 5 (1970) 669.CrossRefGoogle Scholar
  21. 21.
    D. K. Hale and A. Kelly, Ann. Rev. Mater. Sci. 2 (1972) 405.CrossRefGoogle Scholar
  22. 22.
    D. B. Marshall, V. N. Cox and A. G. Evans, Acta Metall. 33 (1985) 2013.CrossRefGoogle Scholar
  23. 23.
    D. C. Phillips and A. S. Tetelman, Composites September 1972, 216.CrossRefGoogle Scholar
  24. 24.
    T. K. Gupta, F. F. Lange and J. H. Bechtold, J.Mater. Sci. 10 (1975) 447.Google Scholar
  25. 25.
    A. G. Evans and A. H. Heuer, J. Amer. Ceram. Soc. 63 (1980) 241.CrossRefGoogle Scholar
  26. 26.
    F. F. Lange, J. Mater. Sci. 17 (1982) 235.CrossRefGoogle Scholar
  27. 27.
    R. M. McMeeking and A. G. Evans, J. Amer. Ceram. Soc. 65 (1982) 242.CrossRefGoogle Scholar
  28. 28.
    B. Budiansky, J. W. Hutchison and J. C. Lambropoulos, In. J. Solids and Structures 19 (1983) 337.CrossRefGoogle Scholar
  29. 29.
    M. Rühle and A. G. Evans, Prog. Mater. Sci. 33 (1989) 85.CrossRefGoogle Scholar
  30. 30.
    A. G. Evans and K. T. Faber, J. Amer. Ceram. Soc. 67 (1984) 255.CrossRefGoogle Scholar
  31. 31.
    A. G. Evans and Y. Fu, Acta Metall. 33 (1985) 1525.CrossRefGoogle Scholar
  32. 32.
    A. G. Evans, Z. B. Ahmad, D. G. Gilbert and P. W. R. Beaumont, ibid. 34 (1986) 79.CrossRefGoogle Scholar
  33. 33.
    P. G. Charalambides and R. M. McMeeking, J. Amer. Ceram. Soc. 71 (1988) 465.CrossRefGoogle Scholar
  34. 34.
    F. Guiu and R. N. Stevens, in “ECF8: Fracture Behaviour and Design of Materials and Structures”, edited by D. Firrao, Vol. II (EMAS Publications, 1990) p. 1010.Google Scholar
  35. 35.
    R. Thomson, Solid state physics 39 (1986) 1.CrossRefGoogle Scholar
  36. 36.
    R. O. Ritchie, Mater. Sci. & Eng. A103 (1988) 15.CrossRefGoogle Scholar
  37. 37.
    C. M. Rühle, N. Claussen and A. H. Heuer, J. Amer. Ceram. Soc. 69 (1986) 195.CrossRefGoogle Scholar
  38. 38.
    D. V. Marshall and V. N. Cox, Acta Metall. 35 (1987) 2607.CrossRefGoogle Scholar
  39. 39.
    Idem., Mech. of Mater. 7 (1988) 127.CrossRefGoogle Scholar
  40. 40.
    A. G. Evans and D. V. Marshall, Acta Metall. 37 (1989) 2567.CrossRefGoogle Scholar
  41. 41.
    G. Vekinis, M. F. Ashby and P. W. R. Beaumont, Acta Metall. Mater. 38 (1990) 1151.CrossRefGoogle Scholar
  42. 42.
    Y. W. Mai and B. R. Lawn, J. Amer. Ceram. Soc. 70 (1987) 1289.CrossRefGoogle Scholar
  43. 43.
    S. J. Bennison and B. R. Lawn, Acta Metall. 37 (1989) 2659.CrossRefGoogle Scholar
  44. 44.
    D. Kunz-Douglas, P. W. R. Beaumont and M. F. Ashby, J. Mater. Sci. 15 (1980) 1180.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • F. Guiu
    • 1
  • R. N. Stevens
    • 1
  1. 1.Department of MaterialsQueen Mary and Westfield CollegeLondonUK

Personalised recommendations