Journal of Materials Science

, Volume 26, Issue 16, pp 4361–4368 | Cite as

Cellular microstructure and heterogeneous coarsening of δ′ in rapidly solidified Al-Li-Ti alloys

  • M. Lieblich
  • M. Torralba


Four melt-spun Al-Li-Ti alloys with ∼2 wt% lithium and 0.10 to 0.35 wt% titanium have been obtained and heat-treated at 473 K for up to 1000 h. Rapid solidification gives rise to a matrix with titanium in solid solution which drastically alters the δ′ coarsening rate. While TEM studies of samples aged for short times show a homogeneous distribution of metastable δ′ phase, as ageing time is increased, and depending on the ribbon section, three different microstructures can be distinguished: (i) on the wheel side, the δ′ distribution is homogeneous; (ii) intermediate regions show δ′ particles delineating cells with narrow walls; (iii) on the gas side, δ′ particles delineate “circular” cells. A higher titanium content in the cell centres than on cell walls has been determined. The coarsening rate of δ′ in microstructure (i) above is slower than in binary Al-Li alloys. Cellular microstructures (ii) and (iii) show the preferential coarsening of δ′ particles on the walls, which is faster the higher the titanium concentration. Taking into account the fact that the partition coefficient of titanium in aluminium in the peritectic region is > 1, an explanation of δ′ phase evolution is given which leads to the conclusion that the effect of titanium in solid solution is to retain vacancies, restricting lithium diffusion.


Titanium Ageing Time Rapid Solidification Titanium Content Titanium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. H. Sanders Jr and E. A. Starke Jr, in Proceedings of 5th International Aluminium-Lithium Conference, Williamsburg, March 1989, edited by T. H. Sanders Jr and E. A. Starke Jr (MCE Publications, Birmingham, 1989) p. 1.Google Scholar
  2. 2.
    M. Tamura, T. Mori and T. Nakamura, J. Jpn. Inst. Met. 34 (1970) 919.CrossRefGoogle Scholar
  3. 3.
    S. E. Naess and O. Berg, Z. Metallkde 65 (1974) 599.Google Scholar
  4. 4.
    L. F. Mondolfo, “Aluminium Alloys: Structure and Properties” (Butterworths, London, 1976) pp. 6, 27, 385.Google Scholar
  5. 5.
    H. Jones, Aluminium 54 (1978) 274.Google Scholar
  6. 6.
    L. E. Collins, Canad. Metall. Q. 25 (1986) 59.CrossRefGoogle Scholar
  7. 7.
    H. M. Flower and P. J. Gregson, Mater. Sci. Tech. 3 (1987) 81.CrossRefGoogle Scholar
  8. 8.
    Z. Di, S. Saji, W. Fujitani and S. Hori, Trans. Jpn. Inst. Met. 28 (1987) 827.CrossRefGoogle Scholar
  9. 9.
    F. W. Gayle, N. F. Levoy and J. B. Vandersande, J. Met. 5 (1987) 33.Google Scholar
  10. 10.
    N. F. Levoy and J. B. Vandersande, Metall. Trans. A 20 (1989) 999.CrossRefGoogle Scholar
  11. 11.
    S. Hori, H. Tai and Y. Narita, in Proceedings of 5th International Conference on Rapidly Quenched Metals, Wurzburg, FRG, 1985, edited by S. Steeb and H. Warlimont (North-Holland, Amsterdam, 1985) p. 911.Google Scholar
  12. 12.
    P. L. Makin and B. Ralph, J. Mater. sci. 19 (1984) 3835.CrossRefGoogle Scholar
  13. 13.
    M. Lieblich, M. Torralba and G. Champier, J. Physique 48 (1987) 465.CrossRefGoogle Scholar
  14. 14.
    B. Noble and G. E. Thompson, Met. sci. J. 5 (1971) 114.CrossRefGoogle Scholar
  15. 15.
    S. F. Baumann and D. B. Williams, Scripta Metall. 18 (1984) 611.CrossRefGoogle Scholar
  16. 16.
    F. H. Samuel and G. Champier, J. Mater. sci. 22 (1987) 3851.CrossRefGoogle Scholar
  17. 17.
    K. Mahalingam, B. P. Gu, G. L. Liedl and T. H. Sanders Jr, Acta Metall 35 (1987) 483.CrossRefGoogle Scholar
  18. 18.
    F. H. Samuel, Metall. Trans. A 17 (1986) 73.CrossRefGoogle Scholar
  19. 19.
    J. M. Sater, S. C. Jha and T. H. Sanders Jr, Mater. Sci. Engng 91 (1987) 201.CrossRefGoogle Scholar
  20. 20.
    H. Jones, ibid. 65 (1984) 145.CrossRefGoogle Scholar
  21. 21.
    R. W. Cahn and P. Haasen, “Physical Metallurgy” (North-Holland Physics, Amsterdam, 1983).Google Scholar
  22. 22.
    R. Elliott, “Eutectic Solidification Processing, Crystalline and Glassy Alloys” (Butterworths, London, 1983).Google Scholar
  23. 23.
    T. B. Massalski, “Binary Alloy Phase Diagrams” (American Society for Metals, Ohio, 1986).Google Scholar
  24. 24.
    T. M. Mackey and T. F. Kelly, Acta Metall. 36 (1988) 2587.CrossRefGoogle Scholar
  25. 25.
    H. W. Kerr, J. Cisse and G. F. Bulling, ibid. 22 (1974) 677.CrossRefGoogle Scholar
  26. 26.
    S. P. Midson and H. Jones, in Proceedings of 4th International Conference on Rapidly Quenched Metals, Sendai, 1981, edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982) p. 1539.Google Scholar
  27. 27.
    H. Kimura and R. R. Hasiguti, Acta Metall. 9 (1961) 1076.CrossRefGoogle Scholar
  28. 28.
    T. H. Sanders Jr, “Precipitation Mechanisms in Aluminum-Lithium Alloys” (School of Materials Engineering, Purdue University, 1983).Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • M. Lieblich
    • 1
  • M. Torralba
    • 1
  1. 1.Centra Nacional de Investigaciones MetalúrgicasCSICMadridSpain

Personalised recommendations