Advertisement

Journal of Materials Science

, Volume 26, Issue 16, pp 4351–4354 | Cite as

Indentation creep of lead and lead-copper alloys

  • A. De La Torre
  • P. Adeva
  • M. Aballe
Papers

Abstract

Stress exponent values have been determined in Pb and Pb-Cu alloys with small Sn, Se and Pd additions by indentation methods (long time hardness tests) to evaluate their applicability as compared with tensile tests. Homogeneous, fine grained alloys were obtained by induction melting and thermo-mechanical treatments. Grain size was 38–60 μm in alloys and 183 μm in pure lead. Stress exponent values, i.e. of 11–12 agree between different methods of derivation and, in fine grained material, with tensile methods. The largest differences in pure lead, i.e. 10–11 versus 7–8 are attributed to high strain rates when indentation size is comparable to grain size. In all cases indentation and tensile tests indicate the same deformation mechanism, namely slip creep. The indentation test is thus considered useful, within limits, to acquire information on the deformation mechanism.

Keywords

Tensile Test Deformation Mechanism High Strain Rate Stress Exponent Indentation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Godavarki and K. L. Murty, J. Mater. Sci. Lett. 6 (1987) 456.CrossRefGoogle Scholar
  2. 2.
    R. M. Hooper and C. A. Brookes, J. Mater. Sci. 19 (1984) 4057.CrossRefGoogle Scholar
  3. 3.
    H. Y. Yu, M. A. Imam and B. B. Rath, ibid. 20 (1985) 636.CrossRefGoogle Scholar
  4. 4.
    W. W. Walker in “The Science of Hardness Testing and its Research Applications”, edited by J. M. Westbrook and H. Conrad (Amer. Soc. for Metals, Ohio, 1973) p. 258.Google Scholar
  5. 5.
    A. Juhasz, P. Tasnadi, P. Szaszvari and I. Kovacs, J. Mater. Sci. 21 (1986) 3287.CrossRefGoogle Scholar
  6. 6.
    H. Y. Yu, M. A. Imam and B. B. Rath, Mater. Sci. Eng. 79 (1986) 125.CrossRefGoogle Scholar
  7. 7.
    K. L. Murty, S. Hussein and Y. H. Jung, Scripta Metall. 19 (1985) 1045.CrossRefGoogle Scholar
  8. 8.
    S. N. G. Chu and J. C. M. Li, J. Mater. Sci. 12 (1977) 2200.CrossRefGoogle Scholar
  9. 9.
    A. Juhasz, P. Tasnadi and I. Kovacs, J. Mater. Sci. Lett. 5 (1986) 35.CrossRefGoogle Scholar
  10. 10.
    T. O. Mulhearn and D. Tabor, J. Inst. Met. 89 (1960–1961) 7.Google Scholar
  11. 11.
    A. De La Torre, PhD thesis. Universidad Complutense, Madrid (1989).Google Scholar
  12. 12.
    B. Walser and O. D. Sherby, Scripta Metall. 16 (1982) 213.CrossRefGoogle Scholar
  13. 13.
    A. De La Torre, P. Adeva, G. Caruana and M. Aballe, Z. Metallkde 81 (1990) 594.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • A. De La Torre
    • 1
  • P. Adeva
    • 1
  • M. Aballe
    • 1
  1. 1.Centro Nacional de Investigaciones MetalúrgicasCSICMadridSpain

Personalised recommendations