Journal of Materials Science

, Volume 26, Issue 16, pp 4331–4340 | Cite as

Si3N4-ZrO2 composites with small Al2O3 and Y2O3 additions prepared by HIP

  • T. Ekström
  • L. K. L. Falk
  • E. M. Knutson-Wedel


Si3N4-ZrO2 composites have been prepared by hot isostatic pressing at 1550 and 1750 °C, using both unstabilized ZrO2 and ZrO2 stabilized with 3 mol% Y2O3. The composites were formed with a zirconia addition of 0, 5, 10, 15 and 20 wt%, with respect to the silicon nitride, together with 0–4 wt% Al2O3 and 0–6 wt% Y2O3. Composites prepared at 1550 °C contained substantial amounts of unreacted α-Si3N4, and full density was achieved only when ⩾ 1 wt% Al2O3 or ⩾ 4 wt % Y2O3 had been added. These materials were generally harder and more brittle than those densified at the higher temperature. When the ZrO2 starting powder was stabilized by Y2O3, fully dense Si3N4-ZrO2 composites could be prepared at 1750 °C even without other oxide additives. Densification at 1750 °C resulted in the highest fracture toughness values. Several groups of materials densified at 1750 °C showed a good combination of Vickers hardness (HV10) and indentation fracture toughness; around 1450 kg mm−2 and 4.5 MPam1/2, respectively. Examples of such materials were either Si3N4 formed with an addition of 2–6 wt% Y2O3 or Si3N4-ZrO2 composites with a simultaneous addition of 2–6 wt%Y2O3 and 2–4 wt% Al2O3.


Zirconia Al2O3 Brittle Nitride Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Rice and W. J. McDonough, J. Amer. Ceram. Soc. 58 (1975) 264.CrossRefGoogle Scholar
  2. 2.
    N. Claussen and C. P. Lahmann, Powder Metall. Int. 7 (1975) 133.Google Scholar
  3. 3.
    R. W. Rice, Ceram. Engng Sci. Proc. 2 (1981) 661.CrossRefGoogle Scholar
  4. 4.
    N. Claussen and J. Jahn, J. Amer. Ceram. Soc. 61 (1978) 94.CrossRefGoogle Scholar
  5. 5.
    S. Dutta and B. Buzek, ibid. 67 (1984) 89.CrossRefGoogle Scholar
  6. 6.
    H. W. Carpenter, G. D. Schnittgrund and J. W. Brockmeyer, “Proceedings of the Twenty-Fifth Automotive Technology Development Contractors”, Coordination Meeting P-209, SAE, 1988, p. 161.Google Scholar
  7. 7.
    K. Terao, Y. Miyamoto and M. Koizumi, J. Amer. Ceram. Soc. 71 (1988) C167.CrossRefGoogle Scholar
  8. 8.
    W. A. Sanders and D. M. Mieskowski, Adv. Ceram. Mater. 1 (1986) 166.CrossRefGoogle Scholar
  9. 9.
    K. Hayashi and A. Yamakawa, Mater. Sci. Engng A105/106 (1988) 175.CrossRefGoogle Scholar
  10. 10.
    K. Rundgren, P. Elfving, K. Kishi, S. Umebayashi and R. Pompe, J. Amer. Ceram. Soc. in press.Google Scholar
  11. 11.
    F. F. Lange, L. K. L. Falk and B. I. Davis, J. Mater. Res. 2 (1987) 66.CrossRefGoogle Scholar
  12. 12.
    K. Rundgren, K. Kishi, S. Umebayashi and R. Pompe, J. Mater. Sci. in press.Google Scholar
  13. 13.
    F. F. Lange, J. Amer. Ceram. Soc. 63 (1980) 38.CrossRefGoogle Scholar
  14. 14.
    J. Weiss, L. J. Gauckler and T. Y. Tien, ibid. 62 (1979) 632.CrossRefGoogle Scholar
  15. 15.
    J. Weiss, L. J. Gauckler, H. L. Lukas, G. Petzow and T. Y. Tien, J. Mater. Sci. 16 (1981) 2997.CrossRefGoogle Scholar
  16. 16.
    M. B. Trigg and E. R. McCartney, J. Amer. Ceram. Soc. 64 (1981) C151.CrossRefGoogle Scholar
  17. 17.
    L. K. L. Falk and M. Holmström, in “Euro-ceramics”, Vol. 1, edited by G. de With, R. A. Terpstra and R. Metselaar (Elsevier Applied Science, London, 1989) pp. 1373–7.Google Scholar
  18. 18.
    A. Bellosi, P. Vincenzini and G. N. Babini, J. Mater. Sci. 23 (1988) 2348.CrossRefGoogle Scholar
  19. 19.
    A.-K. Tjernlund, R. Pompe, M. Holmström and R. Carlsson, Brit. Ceram. Proc. 37 (1986) 29.Google Scholar
  20. 20.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 533.CrossRefGoogle Scholar
  21. 21.
    T. Ekström, P. O. Käll, M. Nygren and P. O. Ols- son, J. Mater. Sci. 24 (1989) 1853.CrossRefGoogle Scholar
  22. 22.
    T. Ekström, L. K. L. Falk and E. M. Knutson- Wedel, J. Mater. Sci. Lett. 9 (1990) 823.CrossRefGoogle Scholar
  23. 23.
    K. H. Jack, Metals Technol. 9 (1982) 297.CrossRefGoogle Scholar
  24. 24.
    S. Hampshire, R. A. L. Drew and K. H. Jack, Phys. Chem. Glasses 26 (1985) 182.Google Scholar
  25. 25.
    L. K. L. Falk, T. Hermansson and K. Rundgren, J. Mater. Sci. Lett. 8 (1989) 1032.CrossRefGoogle Scholar
  26. 26.
    Y. Cheng and D. P. Thompson, Br. Ceram. Trans. J. 87 (1988) 107.Google Scholar
  27. 27.
    E. M. Knutson-Wedel, H. Björklund, L. K. L. Falk and T. Ekström, J. Mater. Sci., in press.Google Scholar
  28. 28.
    F. F. Lange, Int. Met. Rev. 1 (1980) 1.Google Scholar
  29. 29.
    Idem, J. Mater. Sci. 17 (1982) 240.CrossRefGoogle Scholar
  30. 30.
    A. V. Virkar and R. L. K. Matsumoto, in “Advances in Ceramics”, Vol. 24, “Science and Technology Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Yanagida (American Ceramic Society, Westerville, Ohio, 1988) pp. 653–62.Google Scholar
  31. 31.
    A. K. Tjernlund, R. Pompe, M. Holmström and R. Carlsson, Adv. Ceram. 24 (1988) 1015.Google Scholar
  32. 32.
    S. Kobayashi and S. Wada, ibid. 24 (1988) 127.Google Scholar
  33. 33.
    S. Hirono, T. Hayashi and T. Nakashima, ibid. 24 (1988) 1123.Google Scholar
  34. 34.
    Idem, J. Mater. Sci. 24 (1989) 3712.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • T. Ekström
    • 1
  • L. K. L. Falk
    • 2
  • E. M. Knutson-Wedel
    • 2
  1. 1.AB Sandvik Hard MaterialsStockholmSweden
  2. 2.Department of PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations