Advertisement

Journal of Materials Science

, Volume 26, Issue 16, pp 4298–4302 | Cite as

Chemical analysis and electrical conductivity of tellurium phosphate glasses doped with bismuth oxide

  • A. Abdel-Kader
  • A. A. Higazy
  • M. M. Elkholy
  • R. M. El-Bahnasawy
Papers

Abstract

The chemical composition and the temperature dependence of d.c. electrical conductivity are presented for TeO2-P2O5 and Bi2O3-TeO2-P2O5 glass systems. The results have shown that the network former ion has a substantial effect on the electrical conductivity of oxide glasses. Log σ and activation energy values were found to be sensitive to the addition of TeO2 and Bi2O3. They showed an anomalous behaviour.

Keywords

Oxide Polymer Phosphate Chemical Analysis Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Munakata, J. Ceram. Assoc. Jpn 67 (1959) 344.CrossRefGoogle Scholar
  2. 2.
    M. Munakata, Solid State Electron. 1 (1960) 159.CrossRefGoogle Scholar
  3. 3.
    Bh. V. Janakirama-Rao, J. Amer. Ceram. Soc. 49 (1966) 605.CrossRefGoogle Scholar
  4. 4.
    F. R. Landsberger and P. J. Bray, J. Chem. Phys. 53 (1970) 2757.CrossRefGoogle Scholar
  5. 5.
    H. Harper and P. W. McMillan, Phys. Chem. Glasses 15 (6) (1974) 148.Google Scholar
  6. 6.
    A. A. Higazy, and B. Bridge, ibid. 26 (3) (1985) 82.Google Scholar
  7. 7.
    A. A. Higazy, M. A. Ewaida, A Hussein and R. M. El-Bahnasawy, Ind. J. Phys. 63A (2) (1989) 124.Google Scholar
  8. 8.
    C. F. Drake, I. F. Scanlan and A. Engel, Phys. Status Solidi 32 (1969) 193.CrossRefGoogle Scholar
  9. 9.
    G. W. Anderson and W. D. Compton, J. Chem. Phys. 52 (1970) 6166.CrossRefGoogle Scholar
  10. 10.
    L. L. Hench, J. Non-Cryst. Solids 2 (1970) 250.CrossRefGoogle Scholar
  11. 11.
    M. Sayer and A. Mansingh, Phys. Rev. B 6 (1972) 4621.CrossRefGoogle Scholar
  12. 12.
    J. G. Vaughau, C. H. Perry and D. L. Kinser, Phys. Chem. Glasses 18 (1977) 87.Google Scholar
  13. 13.
    C. A. Hogarth and M. J. Basha, J. Phys. D. Appl. Phys. 16 (1983) 869.CrossRefGoogle Scholar
  14. 14.
    P. Gray and L. C. Klein, J. Non-Cryst. Solids 68 75 (1984).CrossRefGoogle Scholar
  15. 15.
    A. Hussein, A. A. Higazy and M. A. Ewaida, J. Mater. Sci. 24 (1989) 457.CrossRefGoogle Scholar
  16. 16.
    I. G. Austin and N. F. Mott, Adv. Phys. 18 (1969) 41.CrossRefGoogle Scholar
  17. 17.
    L. Murawski, C. H. Change and T. D. Machenzie, J. Non-Cryst. Solids 32 (1979) 91.CrossRefGoogle Scholar
  18. 18.
    Aswini Ghosh, B. K. Chaudhuri, J. Mater. Sci. 22 (1987) 2369.CrossRefGoogle Scholar
  19. 19.
    T. N. Kennedy and J. D. Machenzie, Phys. Chem. Glasses 8 (1967) 169.Google Scholar
  20. 20.
    Vogel's, “Textbook of Quantitative Inorganic Analysis”, 4th Edn (ELBS Longman, 1985) pp. 499–500.Google Scholar
  21. 21.
    M. Sayer and A. Mansingth, Phys. Rev. B 6 (1972) 4629.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • A. Abdel-Kader
    • 1
  • A. A. Higazy
    • 1
  • M. M. Elkholy
    • 1
  • R. M. El-Bahnasawy
    • 2
  1. 1.Physics Department, Faculty of ScienceMenoufia UniversityMenoufiaEgypt
  2. 2.Chemistry Department, Faculty of ScienceMenoufia UniversityMenoufiaEgypt

Personalised recommendations